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INTRODUCTION

Assessing the voltage quality at the PCC to a customer,
commonly the standard EN 50160 is applied. The use of
disturbing loads, especially with switching power supplies,
causes voltage harmonics in the low voltage networks. An
estimation of the harmonic network impedance and the
voltage harmonics respectively during the planning is
described in the paper. The developed method increases
the trust worthy for further planning.

BASICS

The equivalent schematic for the connection of a disturbing
load to a low voltage network containing harmonics is
shown in fig. 1.
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Figure 1 Schematic for the �-th harmonics

Supposing the disturbing load as the only cause of the
voltage distortion, the harmonics can be calculated by
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In addition to the injected current harmonics I(�) at the PCC
it is necessary to calculate the impedance of the network
topology ZN and the impedance of the consumer topology
ZB at the low voltage busbar.

The impedance of the network topology ZN (medium
voltage network, medium voltage lines, transformer, low
voltage lines) is calculated by known equipment
parameters and depends only on the location. The
impedance of a complex consumer topology ZB, like
residential areas additionally depends on time and phase
(fig. 2 and 3).

Time dependence results from customer behavior.
Dependence from phase line is caused by an asymmetrical
customer topology.
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Figure 2 Absolut value of the harmonic impedance for a
residential area topology (525Hz)
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Figure 3 Phase angle of the harmonic impedance for a
residential area topology (525Hz)

The harmonic network impedance characteristic in low
voltage systems is classified in 5 different types (fig. 4)
[1, 2].

For a single PCC the type of harmonic impedance
characteristic may vary over the time as well as between
the phase lines.
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Figure 4 Types of the harmonic network impedance
characteristic [1]

METHODS OVERVIEW

For the evaluation of the harmonic network impedance
three basic methods are distinguished.

Modeling the low voltage network of a PCC by discrete
network elements (resistors, capacitors and inductances)
and performing a network calculation for the desired
harmonic frequencies is one way to determine the harmonic
network impedance. This method is only practicable for a
manageable number of loads. Due to the permanent change
of loads in consumer topologies with an immense amount
of small loads the modeling of a static equivalent network
is very difficult. The results of the network calculation are
only valid for the specified location, time and phase line.
The modeling method is preferably used for worst case
analyses, if a limited number of loads has to be connected
to a PCC. Also the knowledge of all modeling parameters
is supposed.

A statistical evaluation of existing network impedance
measurements over a specified time period results in an
time-dependent, averaged harmonic impedance
characteristic for the regarded consumer topologies.
Therefore the statistical method only depends on location
and phase line. The accuracy of the results is mainly
determined by a careful selection of the chosen consumer
topologies. This method is suitable for a general estimation
of the harmonic network impedance for several consumer
topologies. Enhancing the method by the development of
an expert system is not recommended, because of the
disproportional effort for maintenance.

A third method is based on neuronal networks, which are
extensively used on the field of load forecasting. The
method conditional depends on the phase line only and is
independent from location and time. A significant
advantage of this method is the simplicity of obtaining the
necessary input data. A basic condition for the use of

neuronal networks is a detailed knowledge of all
parameters, which have an influence on the harmonic
network impedance. These influencing parameters are
input data for the neuronal network.

The features of the different methods are compared in
fig. 5.
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Figure 5 Features of the different methods

Because of it's advantages the method using neuronal
networks will be specified in the presented paper.

PARAMETERS INFLUENCING THE HARMONIC
NETWORK IMPEDANCE

Due to the analysis of more than 6000 existing
measurements of the harmonic network impedance [3],
three categories of influencing parameters are defined
(fig. 6).
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Figure 6 Classification of the influencing parameters

Consumer topology (category 1)

All consumers of a consumer topology are divided in
subcategories regarding their behaviors as shown in fig. 7.
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Figure 7 Subcategories of the consumer topology



Next the total power consumption of the PCC is split into
the subcategories. On working-days the harmonic network
impedance mainly depends on the trade/offices and the
industry, while at weekends the impedance is almost
exclusively effected by households. To take into account
different energy sources, the percentage of off-peak storage
heatings, hot water tanks and electric stoves needs to be
specified.

The necessary input data for the consumer topology results
from an analysis of the supplied region and is normally
available.

Environmental influences and time period (category 2)

Beside the network and consumer topology the harmonic
network impedance is influenced by the environment and
the time (cf. fig. 2 and 3). Nights for instance are typical
low load states mainly determined by a few permanent
loads and a possibly connected street lighting. In contrast to
this the highnoon at weekends is characterized by many
resistive loads (cookers, ...) and the evening especially by
switching power supplies of computers or TV-sets. The
influencing parameters of category 2 are:

� day of the week
� daytime
� sunset and sunrise time
� temperature (day and night)
� weather

The weather (intensive clouds) as well as sunset and
sunrise especially influence the use of lighting, while
temperature mainly influences the heating behavior. The
combination of temperatures and sunset/sunrise contains
seasonal information.

The input data are available from meteorological stations.

Network topology (category 3)

The harmonic network impedance may be effected by the
topology of the medium and low voltage network (fig. 8).

The influencing parameters shown in fig. 8 are only
relevant, when the power consumption of the connected
consumers is low. Due to wide cable networks at the low
voltage level or the use of reactive-power compensation
equipment, resonance's may occur in the low-frequency
range.

The necessary input data are mostly available from network
diagrams or equipment databases provided by the regional
utility.

FORECASTING ALGORITHM

The forecasting algorithm consists of two steps. First the
type of the harmonic network impedance characteristic is
determined by a learning vector quantization. To obtain an
exact harmonic network impedance characteristic, a
specialized neuronal network is used for each impedance
type (fig. 4). The algorithm is shown in fig. 9.

The learning vector quantization for the classification of
the impedance type is realized by an one-layer neuronal
network with supervised learning method. Different typical
vectors of input data of each impedance type (so called
codebook-vectors) are needed for the learning process. If
the learning process has completed the neuronal network is
able to decide, which impedance type corresponds with the
input data vector. On the basis of this decision the
specialized neuronal network of step 2 is selected. For
these specialized neuronal networks the supervised
backpropagation algorithm is used for the learning process.
The algorithm works with variable learning rate and
momentum term.

Every input data vector consists of 22 standardized values
and represents all influencing parameters introduced in the
former explanations. The size of the output data vector
depends on the measurement data used during the learning
process. Commonly, reactance and resistance of the
impedance will be calculated for up to 50 harmonics
(50Hz-steps) in the frequency range between 50Hz and
2500Hz.

The plausibility of the input and output data vectors for the
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Figure 8 Subcategories of the network topology



learning process is very important. Inconsistencies or
systematical errors are not recognized by the neuronal
network and are handled like valid data during the learning
process.

Limits for the usage of the neuronal networks depend on
the range of variation directly. If only data of residential
area topologies and working days are included into the
learning process, forecasting the harmonic network
impedance for the weekend in industrial areas is not
possible.

0 0.25 0.5 0.75 1
0.75

0.5

0.25

0

0.25

0.5

R

X

�

�

L 1
L 2

L 3

Figure 10 Different types of harmonic network impedance
characteristic for each phase line of one PCC
at the same time

To obtain good learning results for the neuronal networks it
is recommended to handle the measurement data of each
phase line separately. At PCC's with approximately
symmetrical consumer topology, which means similar

impedance characteristics for each phase line, it is
sufficient to include only one phase line into the learning
process. By this an overspezialisation of the neuronal
network to one consumer topology can be avoided.
However the validity of the input data vector must
correspond with the output data of the selected phase line.

If the impedance type differs between the phase lines
(fig. 10), the phase line, whose output data vector matches
the available input data vector most exactly, has to be
chosen. Assuming the causes for the different impedance
types are known, another possibility for the handling of
such unsymmetrical consumer topologies is the use of
different input data vectors for each phase line. In fig. 10
the impedance type CS in phase line L2 is caused by street
lighting together with a reactive-power compensation
equipment. The different impedance characteristic of the
phase lines L1 and L3 results from an unbalanced
connection of similar loads.

When the input data vector is only partially known, the
algorithm nevertheless returns results. Especially in
consumer topologies with a middle or high power
consumption the parameters of the network topology
(category 3) can be neglected without a significant decrease
of accuracy. This feature of the forecasting algorithm
further increases it's efficiency.

EXAMPLE

To verify the presented method, 705 harmonic network
impedance characteristics of several low voltage networks
were analyzed. The impedances are from residential areas
only. These consumer topologies are very complex and
difficult to handle with the methods mentioned in fig. 5.
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The time period includes working days as well as
weekends. The lines of the selected low voltage networks
only consist of cables. The measurements took place
between June and September. Table 1 summarizes the
ranges of input data for the influencing parameters of the
consumer and network topologies (categories 1 and 3).
Fig. 11 shows the variation of the environmental
parameters. The parameters 01 to 05 qualify the percental
contribution of each mentioned subcatogory on the PCC's
total power consumption. The percentage of electrically
supplied equipment for the respective purpose is given for
the parameters 07 to 09.

Table 1 Selected input data ranges for the analyzed consumer
and network topologies

influencing parameter range of values
01 households 83% to 99%
02 trade and offices 0% to 6%
03 markets 0% to 9,5%
04 public buildings 0% to 4,5%
05 hotels and restaurants 0% to 3%
06 street lighting 0kW to 14,7kW
07 off-peak storage heating 0%
08 hot water tank 0% to 80%
09 electric cooker 0% to 100%
10 length of lines 1500m to 3000m
11 conductor cross section 120mm2 to 185mm2

12 conductor material 50% to 100% Al
0% to 50% Cu

13 medium voltage level 10kV to 20kV
14 transformer nominal power 160kVA to 630kVA
15 transformer utilization 55% to 85%
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Figure 11 Range of values for environmental parameters

The ranges of the values for the three categories of
influencing parameters roughly define the limits of the

neuronal network. Restricting the data for the learning
process to residential areas only causes a certain
specialization of the neuronal network, but increases its
forecasting precision.

The measured harmonic network impedances are classified
according to the 5 specified impedance types. Impedances
of type C occur as well as impedances of the types CS and
R. After a selection of suitable codebook vectors the
learning process for the learning vector quantization is
started.
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Figure 12 Range of values for the measured type C impedances

Taking into account a wide and regular variation of the
input and output data, the learning process for each
specialized backpropagation network is realized. The range
of values for the used impedance characteristics of type C
is shown in fig. 12.

Because of random initial weights each learning process
results into another minimum of the error surface and
accordingly other final weights. That is why a total of 100
learning processes were performed. Finally the best weight
configuration is chosen.

To verify the learned neuronal network, the forecasted
output data vectors for different input data vectors are
compared with the corresponding measurement data
(fig. 13 and 14). Especially in the interesting range of the
harmonic network impedance characteristic good results
are obtained.
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(forecasting results are dotted)
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IMPLEMENTATION

The algorithm described above, is part of the software of
the measurement system IMEDA (fig. 15) IMEDA is an
extensive measurement system and realises the acquisition,
archiving, calculation and representation of power quality
parameters.
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Fig. 15 IMEDA's analysis software

The central database stores all data (influencing parameters
and measurement data), which are necessary for the
learning process as well as for the forecasting process. The
setup and control of the program execution is realized by
commands provided by a control file. That's why no
interaction with the user is needed for different executions
of the program. Because of the long calculation times,
especially the learning process for the neuronal network
benefits from this advantage.

CONCLUSIONS

The paper describes a method for the calculation of the
harmonic network impedance especially for complex
consumer topologies in low voltage networks. It is an
alternative for conventional network calculation using
discrete network elements. Its higher efficiency results
from the use of  input data, which are easy to obtain.
Specializing the neuronal network of a few selected
consumer topologies increases the accuracy of the
forecasting algorithm. Together with the current harmonics
injected at the PCC a calculation of the voltage harmonics
is possible during the planning of low voltage networks.
Using actual standards, the voltage harmonics planning
levels and planning margin can be calculated.
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