
INTRODUCING THE FIRST PART OF A NEW STANDARD FOR SYSTEM INTERFACES FOR
DISTRIBUTION MANAGEMENT SYSTEMS (DMS)

E Lambert
Electricité de France

1, Avenue du General de Gaulle, BP408, 92141 Clamart Cedex (France)
Tel: +33 1 47654029 – Fax: +33 1 47653991– E-mail: Eric.Lambert@edfgdf.fr

W D Wilson
Schneider Ltd

PO Box 41, Chippenham, Wiltshire SN15 1JJ (UK)
Tel: +44 1249 456045 – Fax: +44 1249 659635 – E-mail: bill_wilson@schneider.co.uk

SUMMARY

This paper is presented on behalf of IEC TC57 (Power
Systems Control and Associated Communications) Working
Group (WG) 14 to provide an overview of how it is
working to define internationally recognised standard
System Interfaces for Distribution Management Systems
(DMS). WG14's objective is to aid Utilities and Vendors
by identifying and defining standard interfaces so that
useful information can be electronically exchanged
between different operational systems, thus reducing
implementation and support costs. The standards are
limited to the definition of the interfaces and are to be used
across multiple computer platforms and languages. The
authors, both members of WG14, gratefully acknowledge
the contribution to this paper of the other members.

THE MISSION OF WG14

At the Plenary Meeting of the International
Electrotechnical Commission Technical Committee 57:
Power System Control and Associated Communications,
held in Dresden in September 1996, the decision was taken
to proceed with the work of drafting a new standard for
System Interfaces for Distribution Management Systems.
This followed the initial work-study that had already been
undertaken by an Ad Hoc Working Group. Working Group
14 (System Interfaces for Distribution Management) is
tasked to produce a series of standards named IEC 61968.
The first part of this series was published at the end of 1998
in the form of a committee draft.

The IEC 61968 series is intended to facilitate inter-
application integration, as opposed to intra-application
integration, of the various distributed software application
systems supporting the management of utility electrical
distribution networks. Intra-application integration is
aimed at programs in the same application system, usually
communicating with each other using middleware that is
embedded in their underlying runtime environment, and
tends to be optimized for close, real-time, synchronous
connections and interactive request/reply or conversation
communication models. IEC 61968, by contrast, is
intended to support the inter-application integration of a

utility enterprise that needs to connect disparate
applications that are already built or new (legacy or
purchased applications), each supported by dissimilar
runtime environments. Therefore, IEC 61968 is relevant to
loosely coupled applications with more heterogeneity in
languages, operating systems, protocols and management
tools. IEC 61968 is intended to support applications that
need to exchange data on an event driven basis. IEC 61968
is intended to be implemented with middleware services
that will complement, not replace, utility data warehouses,
database gateways, and operational stores.

Why a standard

Electricity distribution worldwide is entering a period of
change. Two major aspects of the change are to be seen in:

• The electricity market enters 1999 in the deregulation
process. At the same time consumers have open
access to independent suppliers outside the distribution
company’s service territory.

• The increased awareness of business and residential
consumers perception of the utility’s operation, leading
to a greater emphasis on quantifying the ‘cost’ of
providing services and improvements on “perceived
quality”.

Electricity de-regulation, which is in various stages of
implementation around the world, will force many
electrical utilities to increase accuracy in managing their
distribution networks and decrease their reaction time to
events. To achieve this, the degree of automation of the
distribution network will have to increase with a
corresponding increase in the availability of tools to help
the management of the process.

 The utilities have to focus more on the needs and
perceptions of their customers to achieve their business
goals. Although the core business functions are unlikely to
change dramatically they will need to be performed more
efficiently and still meet consumer-oriented goals. The
inevitable outcome is for the utilities to employ information
technology to support improved efficiencies and right-
sizing of their operations.

The current situation in utilities at the distribution level
forces application developers to build their own interfaces
to any systems from which they need information. This
state of affairs makes building applications difficult
because the developers have to be concerned not only with
the implementation of the functionality but also with the
implementation of the different interfaces they may need.

Different systems are involved in DMS (for instance, a
trouble-call system, a geographical information system, a
Scada system) and it is now difficult to share information
between these different systems because of their complex
and dynamic nature.

Information Technology has seen the emergence of
standards for the last five years. Among those standards,
some concern Object Oriented Techniques. These
techniques promote a component-based client-server
architecture that has the potential to overcome actual
limitations. Object Oriented Analysis (OOA) will be used
to develop the interface architecture and appropriate
component interfaces. OOA is ideal for this task as objects
include two fundamental characteristics:

• Abstraction: an object is described solely by its
behaviour, expressed in terms of the published services
it offers and uses. This means that implementation
details are hidden.

• Encapsulation: information forming a part of an object
can only be accessed through interfaces offered by the
defined functions.

Electricity has seen an emergence of standards too.
Amongst them some concern network automation, data
acquisition and transmission. At the present time, there is a
need to standardise applications, and inter-application
communication, as the information technology market is
mature and enough standardised. DMS technology is still
in the development stage, not yet mature or stabilised. At
this stage it could very likely be influenced by interface
standards if these would ease its ability to inter-operate
with other systems and applications. Through its distributed
functions, a DMS plays a key role in the shaping of a
utility’s Information Technology (IT) architecture. It builds
links between the various departments and their supporting
systems. A certain standardisation of its interface to the
other functional systems should minimise the
implementation efforts.

The main objective of this work is to define standard
interfaces that are implementation-independent and
extensible, and thus guarantees their validity through future
years.

Benefits to the Utility. From the point of view of the
Utility, there are considerable advantages to be gained in
acquiring systems that adhere to a recognised standard.
These include:

• It will be easier to find vendors providing partial or
total solutions for DMS applications. The optimum
solution to match a particular utility’s business process
model may well involve component products from a
number of different vendors.

• It will facilitate collaboration between utilities. In a
deregulation market, it will help to have a common
business process and will force utilities to minimise
the development for their own specific business
process. Utilities will focus more on the business
process itself, knowing that the standard will cope with
technological trends.

• If utilities still have a development division, they will
become more integrators of component applications to
map their business process. If they still have a specific
business process, maybe it will be fulfilled partly by an
off-the-shelf component application, making the
adaptation easier and minimising the cost development
of a total function.

• Utilities that develop high level functions could find
more easily vendors or integrators, acting as partners,
to integrate or to promote their function in a DMS
solution.

• It will help Utilities to buy more off-the-shelf products
as small suppliers could have access to the market so
long as their product complies with the standard. The
standard will act as a label of quality and compliance.

• The standard is a good communication tool. Even if a
specific business process has to be included, it will be
easier to integrate an application conforming to the
standard. As the standard promotes Application
Programming Interfaces, utilities and vendors/
integrators will focus more on this level than on the
internal characteristics of an application.

• The existence of a standard interface to exchange
information will allow the electrical utilities to choose
the best supplier for every application from an
economic and technical point of view. This
circumstance will help the utility to increase quality of
service and to offer energy at competitive prices.

• The DMS functionality may be expanded easily,
because the system interfaces support the addition of
new components instead of only complete, monolithic
applications, without changing the installed base of
applications.

• The interoperability of heterogeneous Distribution
Management applications will be enhanced. Gradual
addition or gradual replacement of Distribution
Management applications will be feasible. The
provision of standardised interfaces supports gradual
migration because each function is viewed as a black
box. This makes it possible for legacy (existing,

monolithic) distribution management applications to
integrate flawlessly with other applications, whether
new or existing, because no requirements are placed on
the implementation within the black box.

• Less risk in operating distribution management
applications because proven interface technology is
used.

• The costs of acquisition and maintenance will certainly
decrease. Installation, training, and operating cost will
be reduced because no external gateways or special
interfacing software is needed.

• Contributing to the standard gives utilities an
awareness of technological direction. Knowing that a
technological solution exists helping to solve its
business process, a utility will gain considerable
benefit if it adheres to the standard.

Benefits to the Vendor. From the point of view of the
Vendor, there are considerable advantages to be gained in
designing and producing systems that adhere to a
recognised standard. These include:

• It will be easier to find partners to work together to
provide total solutions for DMS applications. A major
DMS may encompass SCADA, mapping, outage
management, network analysis, customer information
systems, asset management, human and financial
resource management and more. The optimum solution
to match a particular utility’s business process model
may well involve component products from a number
of different vendors.

• DMS projects should become shorter, more
manageable and more profitable. In both the utility’s
and the vendor’s interest, solutions which minimise
development and therefore implementation risk by
utilisation of proven products will be preferable.

• As a result of the above, some vendors will focus on
integration, licensing component applications to build
into their solutions. Others may prefer to become
simply licensors of standard products, allowing others
to take the integration risks.

• Vendors will have a more dynamic and attractive offer
to present to the market. All vendors need orders and
no doubt will waste no time in announcing compliant
systems. Such claims will need to be weighed
carefully.

• Small suppliers will be able to gain credibility. The
implementation of a major DMS system is today
beyond the capability and resources of a small supplier
but, if he has a product that conforms to the standard,
he will be able to select partners to provide a total
DMS solution.

• The standard is a good communication tool, allowing
both vendors and utilities to talk the same language
and reducing the need for lengthy specifications. The
possibility of misinterpretation of requirement scope is
reduced. The costs of requirements capture, bid
preparation, tender evaluation, work statement
preparation and system analysis and design are all
reduced.

• Contributing to the standard gives to vendors
awareness of market direction. DMS is still a fledgling
field with different needs and priorities evident in
different countries. The new standard provides
leadership and direction to this emerging market.

To this end, for a serious vendor or utility there is no
alternative but to participate, since the market will demand
products that conform to the standard.

IEC TC57 Working Group 14

Working Group 14 (WG14) was commissioned in
September 1996 and has met three times each year since.
Much of the work to date has encompassed problem
definition, liaison with other parallel and related
standardisation efforts both inside the IEC and outside and
the selection of a suitable methodology. A significant input
has been the research and analysis by the CIRED Working
Group on Distribution Automation, published in 1996.

The Working Group includes amongst its membership 27
representatives from nine countries and from different
disciplines including power utilities, specialist consultants,
research institutions, power control system vendors and
GIS vendors.

The first phase of the project, Parts 1 and 2 of the new
standard, to be known as IEC 61968, has been completed
and these parts have been passed to the various National
Committees at the end of 1998 for their comment and
input. Part 1 identifies and establishes requirements for
standard interfaces based on an Interface Reference Model
(IRM). Part 2 is the Glossary for the standard. Subsequent
parts will define each interface identified in the IRM.

Co-ordination with other Standards Committees

The market place for Distribution Management Systems is
still developing and Working Group 14 has been conscious
of the need to co-ordinate their efforts with other standards
committees and groups who are working in the DMS and
related fields. There are several other such Working
Groups operating under the aegis of IEC TC57. Their
areas of responsibility are shown in Figure 1 below:

Figure 1: Working Groups within IEC TC57

The operations of the various TC57 Working Groups are
co-ordinated by a Strategic Policy Advisory Group
(SPAG). In addition WG14 monitors the work of various
other standards-defining bodies and development projects
where they are working in the Distribution Management
field as described in Figure 2 below.

Figure 2: Co-ordinating amongst standards activities

Of particular significance to the work of WG14 has been:

• The report of the CIRED Working Group on
Distribution Automation, already mentioned.

• The CCAPI project in the USA which, although
initially primarily aimed at transmission and
generation control systems, is being extended to
encompass DMS systems. They have contributed the
Common Information Model (CIM) to describe power
networks and are establishing a message bus interface.

• The Utility Integration Bus (UIB) project which is
being developed at Kansas City Power and Light.

• The work of TC57 Working Group 13 which is
complementary to Working Group 14’s, but for
transmission and generation. They have adopted the
CIM, introduced some refinements and have passed it
to the National Committees for comment in October
1998.

The phases of development of the standard

Parts 1 and 2 of IEC 61968 cover the general requirements
which compliant systems must support. The remaining
parts of the standard address specific interfaces for the
various business activity segments defined in the IRM:

Phase IEC 61968
Part

Title

1 1. Interface Architecture And
General Requirements

2. Glossary

2 3. Interface Standard For Network
operation

4. Interface Standard For Records
And Asset Management

Future
5.

Interface Standard For
Operational Planning And
Optimisation

6. Interface Standard For
Maintenance And Construction

7. Interface Standard For Network
Extension Planning

8. Interface Standard For Customer
Inquiry

9. Interface Standard For Meter
Reading And Control

10.
Interface Standard For Systems
External To, But Supportive Of,
Distribution Management

W G s
1 0 , 1 1 , 1 2

W G 0 9

External Utility
Control Center
 WG 13

 W G 0 7

Customer
Inquiry

W G 1 4

W G 0 3
W G 0 5

Operational
Planning &

Optimization
Maintenance

& Construction

Network
Operation

Utility Business Systems

Corporate LAN

 EMS
Control Center
 WG 13

Records
& Asset

Management

Network
Extension
Planning

Interface
Architecture

External Companies

Meter
Reading &

Control

CCAPI

WG14

SPAG

WG13OMG
Utility
SIG

Standards &
Industry

 Awareness
ISO ODP

IEEE
CIRED

Open GIS
Microsoft
DA/DSM
Electronet

STEP method

IEEE SCC36
(initiated from
MMS Forum)IEC TC57

WGs
10, 11, 12

Utility
Substations

Initiative

• CCWG - ICCP
• SSWG - GOMSFE
• Profiles - CASM

TECHNOLOGY OVERVIEW

Methodology

IEC 61968-1 describes utility inter-application
infrastructure requirements necessary to integrate
components distributed throughout the enterprise. The
services and functionality described is independent of the
underlying component-based infrastructure. In the
requirements, an “event” is a unit of information exchange
that is issued asynchronously by its source (“push”). A
“component” is a module of application software that is a
component of the integration bus as either a publisher or
subscriber (receiver) of an information exchange.

The business process begins by identifying the information
to be exchanged and the components involved. This
typically involves one publisher that has the information
and initiates the exchange, and 0 to n subscribers that will
receive the information.

IEC 61968 requires that a compliant utility inter-
application infrastructure:

1. Shall allow components to exchange information of
arbitrary complexity.

2. Shall be able to be implemented using various forms of
distributed component technology (e.g., CORBA,
DCOM, message brokers, message oriented
middleware, relational databases, object-oriented
databases, or others).

3. Shall provide an Information Exchange Model facility
that users employ to describe the information to be
exchanged.

4. Shall allow publisher and/or subscriber components to
be deployed by system administrators independently of
other components.

5. Shall ensure that published information is completely
re-usable in the sense that once a given type of event is
published, any new authorised entity may acquire the
event without having to make any changes or additions
in the publisher component.

Requirements Analysis Methodology. To help solve the
problem of effectively sharing information across Electric
Utility Departments and systems, a common modelling
notation or language is needed. A modelling language
extends natural language by adding formal constructs to aid
in communication by reducing ambiguity. By using a
common modelling language across the utility, utilities can
better define what information needs to be shared across
departments.

IEC 61968 recommends that system interfaces of a
compliant utility inter-application infrastructure be defined
using Unified Modelling Language (UML). UML consists
of modelling concepts and a defined notation. The
modelling concepts are Use Cases, Objects and their
relationships, Sequence and Activity Diagrams, and
Component and Deployment diagrams. Use Cases are
defined process for capturing system requirements and
generating the information necessary to drive the other
models. Static and Dynamic Object models show
attributes, state changes and relationships (such as
collaboration) of the problem domain objects. Sequence
and Activity Diagrams show the sequence and flow of
objects through a system. Component and Deployment
diagram show the implementation of logical object models
into real world code and architecture.

UML offers a large tool chest to analysts, designers and
implementers. These tools help guide system and
application designers in creating architectures and systems
to meet stated requirements. Not all of UML tools are
needed to meet WG14 objectives. However, with UML it
is necessary to generate Use Cases because Use Cases
provide the information necessary to build the other UML
models. WG14 created a set of Use Cases describing how
DMS users would like to share information between
different DMS applications. From these Use Cases, WG
14 can identify common requirements that drive the design
of both the Interface Architecture and specific DMS
interface standards.

Component ‘A’1

Component
 Adapter2

IEC 61968-3
Interface Spec.3

Middleware
Adapter4

Component ‘B’

IEC 61968-4
Interface Spec.

Middleware
Adapter

 Component ‘n’

IEC 61968-10
Interface Spec.

Middleware
Adapter

...

Middleware Services5

Communication Services6

Platform Environment7

Component
 Adapter

Component
 Adapter

Overview of the Services Profile. The requirements for
all the individual parts in this Service Profile are explained
in the following paragraphs.

Information exchange among components can either be a
piece of data or the result of an execution of functionality
and for this purpose is called a services Exchange. For
example, a Component can be a classic, procedural or a
fully object-oriented application build around the latest
technology. Also, Components can be distributed across
the network enabling flexible deployment of DMS
applications in the utility-wide IT-architecture. The scope
of a Component is unlimited: it can perform any function
that is required for Distribution Management.

A component can either be Services-compliant, meaning
that it knows, understands and satisfies Services
requirements or non-Services-compliant. A Non-services-
compliant Component must be made compliant before it
can fulfil its role on the Services.

For example, each vendor of today’s DMS applications
may have its own application architecture, its own API and
its own mechanism of interfacing the application with other
products of the same vendor. Such existing applications
may very well have an important role as a client of the
Services. But the industry cannot expect that a vendor
rebuild all its existing applications to new versions that are
Services-compliant. Even new applications may not always
be Services-compliant, but instead use the established
vendor-specific architecture and application interface.
Therefore, non-Services-compliant Components probably
will be in the majority during the early stages of the IEC
61968 standard series. When IEC 61968 becomes more
widely accepted Services-compliant Components will
become more widely available.

Component Adapters. A Component Adapter in the
context of IEC 61968 is IEC 61968-compliant software that
enables a non-compliant software application to use the
services. As such, the component adapter only goes as far
as necessary to make the Component conformant to one or
more specific IEC 61986-3 interface specifications.

This implies that:

• For Components that already are services-compliant,
the Component Adapter is not necessary.

• When a non-compliant Component is used in the
services-environment, at least one Component Adapter
is present for that Component to make it services-
compliant. It can also be the case that more than one
Component Adapter is used to make a single
Component compliant with the services (e.g. one
Component Adapter for each IEC 61968 interface
specification).

• For those Components that are non-compliant, each
Component Adapter is custom-made for that specific
Component because it depends heavily on the
architecture and implementation of the Component. A
Component also runs in a specific hardware/operating
system (HW/OS) environment. Therefore the triple set
Component, (set of) Component Adapter(s) and
HW/OS are fully dependent on each other.

How the Component Adapter makes a non-services-
compliant Component compliant to the services, depends
on the Component and the role it performs. A
complication is that a Component that was not coded to be
services-compliant cannot be made services-compliant
directly, and that each Component is different.

Interface Specification. The IEC 61968 Interface
Specification requirements consists of three parts:
Component-specific specifications, requirements that refer
to services specific for the utility domain and requirements
that refer to services which are common in a distributed
computing environment based on components. Individual
IEC 61968 Interface specification for business activity
areas (see above) are available in following parts of this
IEC 61968 standard (IEC 61968-3 and further). For all
three parts in an IEC 61968 Interface specification, it is
required to:

1. be declarative, containing pre- and post-conditions,
attributes, methods and parameters as needed for all
the service exchanges that are part of the specific
interface specification

2. be programming-language neutral

3. emphasise the separation of interface and
implementation

4. be middleware-independent

Requirements for Component-specific Interface
specifications are exclusive usage of IEC 61968 Interface
services for those requirements that can be supported by
those services. This means that for not-covered
requirements, additional services may be specified (and
probably need to be programmed or mapped in the
Middleware Adapter or Middleware services). Required
services for the DMS domains are:

1. Information Exchange Model Access service: This
service allows distributed components to enter and
discover the exchange syntax of registered components
and be notified when changes occur

2. Directory Based services: These services allow access
to, initial and runtime population of, and browsing of
the available exchanges and services on the services.
Different views based on specific properties can be
defined in this service. For example, this allows the
definition of a deployment property view for critical
items that can be compared to the runtime property
view to determine if these items are present on the
Services. The Directory contains among other things,
IDs for component and business objects templates
(classes) as well as instances.

3. ID Factory: This service allows for the creation of a
unique ID. There may be multiple types of ID’s based
on specific rules for each type

4. Persistent Exchange service with checkpoint facilities,
allowing components that register at different times to
synchronise status with other components. This
service supports entering and purging exchanges,
marking (a group of) exchanges and reading (a group
of) historical exchanges

5. System Administration: This service interface allows
administration and monitoring of exchanges and
components on the Services. Component failure and
load balancing are also part of this service.

6. Configuration: This service provides an interface for
components to obtain their configuration from a
persistent data store at start up or while running after a
component has been partially configured locally.

7. Filtering: This service allows for the definition and
applying of filters based on exchange types and
contents.

Required common distributed computing services in
Distribution Management are:

1. Component Life Cycle Service: allow the starting,
stopping, and control of components to be executed on
the Services.

2. Naming Service: This service provides a component
naming service that supports a hierarchical structure
and allows a component to locate other components
using a human readable name. The naming service
supports use of existing utility names, as well as
creation, removal and aliasing of names.

3. Time Service: provides a way for distributed
components to all have the same time with a
configurable accuracy.

4. Concurrency Control Service: This service facilitates
management of shared, similar items that are
distributed on the Services, for example when multiple
Components take care of different parts (exchanges,
exchange types) of the same business object in real
life.

5. Security services: allow an application to set and
verify the privilege level of components and users with
which exchanges are being performed, as well as
encryption and decryption of individual exchanges.
This service also supplies host authentication i.e.
authentication of node(s) that attach to the Services.

6. Transactional Service: allows an application to declare
the beginning and end of a multi-step transaction that
either succeeds or fails as an atomic unit.

7. Component Interaction services: allow for reliable
message transfer with a selectable Quality of Service.
The Component Interaction services allow for life-
cycle management of interaction services (create,
delete, copy and move) and querying of established
interaction (mainly valid for Publish and Subscribe
interactions).

8. The Publish and Subscribe Messaging Service, which
allows for synchronous and asynchronous message

transfer between decoupled (anonymous) component
instances.

9. The Request/Reply Messaging service, which allows
for reliable synchronous message transfer between
coupled, identified component instances.

10. The Publish/Reply Messaging service, which allows
for a decoupled initiation of a message transfer
(Publish), that is finished by a coupled transfer (Reply).

11. Workflow services: allow application level
programmers to create and run business process
automation agents.

Middleware Adapter. A Middleware Adapter in the IEC
61968 standard is IEC 61968-compliant software that
augments existing middleware services so that the utility’s
inter-application infrastructure supports required Services.
As such, the Middleware Adapter only goes as far as
necessary to make the used set of Middleware services
conformant to the requirements of one or more available
IEC 61986-3 interface specifications. In this context the
Middleware services represent not one single interface, it
represents a set of interfaces to a set of corresponding
services for Components.

Interface Reference Model (IRM)

A key part of the work of IEC 61968 Part 1 has been the
decomposition of the DMS business domain into
manageable components. From an early stage, the Working
Group decided that this decomposition should be by
business function rather than by the the domains of existing
products in the market place, for example Geographical
Information, Trouble Call and SCADA systems, since
these in themselves varied widely in their coverage of
requirements and overlapped significantly.

Two levels of decomposition were found to be necessary:

• Business activity segment which contains
• Component applications

Components are the lowest level for which an IEC 61968
interface will be defined. A single IEC 61968 specification
will be issued for each business activity segment. It is
envisaged that components within a segment may be
supplied by different vendors and components may or may
not use IEC 61968 services to communicate within a
segment.

This decomposition is to some extent subjective since
throughout the world utilities operate with different
organisational structures. Nonetheless it is essential that
the segments and components are easily recognisable to
utilities.

Business activity segments

Various departments within a utility co-operate to perform
the operation and management of a power distribution
network; this activity is termed Distribution Management.
Other departments within the organisation may support the
Distribution Management function without having direct

responsibility for the distribution network. This
segmentation by business function is provided in the
Interface Reference Model (IRM), which is described in
Figure 3 below.

Network
Extension
Planning

Customer
Inquiry

Meter
Reading &

Control

Records &
Asset

Management

Maintenance
&

Construction

Interface
Standard: Part 4

Interface
Standard: Part 6

Interface
Standard: Part 7

Interface
Standard: Part 8

Interface
Standard: Part 9

Customer
Account

Management

Distribution Management

Corporate Services

Financial Premises
Human

Resources

Energy
Management

Weather

Interface
Standard: Part 10

Energy
Trading

Network
Operation

Interface
Standard: Part 3

Operational
Planning &

Optimization

Interface
Standard: Part 5

Interface
Standard: Part 10

Interface
Standard: Part 10

Interface
Standard: Part 10

Interface
Standard: Part 10

Interface
Standard: Part 10

Interface
Standard: Part 10

Generation And Transmission Management

IEC 61968 Compliant Middleware Services

Systems External To
Distribution Management

Figure 3: Interface Reference Model

The business activities that are directly involved in the
operation and management of a distribution network are
classified as follows:

Network operation Switchgear operation, SCADA, fault
management, feedback analysis,
reporting, real-time calculations,
protection, transformer load
management, regulatory compliance,
equipment diagnostics

Records and asset
management

Substation and network inventory,
geographic inventory, equipment
analysis

Operational
planning and
optimisation

Load forecast, Contingency analysis,
Short-circuit analysis, Optimal power
flow, Switching simulation, Field
crew loading analysis, Work
scheduling, Outage analysis

Maintenance and
construction

Periodic maintenance scheduling,
Unscheduled work orders, Work order
estimates, Maintenance crew
management, Work state supervision,
Materials inventory, Construction
crew management

Network extension
planning

Load forecast, Power flows,
Contingency analysis, Short-circuit
analysis, Optimal power flow, Energy
loss calculations, Feeder voltage
profiles, Construction costing, Work
management

Customer enquiry Customer information, Service orders,
Outage reporting, Crew management,
Outage management, Marketing

Meter reading and
control

Load characteristics, Consumption
meters, Quality factors, Load control,
Dynamic tariff aplication, Power
modulation, Customer outage
detection, Remote service
connection/disconnection.

As well as those business activities directly involved in the
operation and management of the power network, other
activities support these indirectly. These include customer
account management, weather, financial, premises
management, human resources, EMS and energy trading
systems. A generic system interface specification (IEC
61968 Part 10) will be produced to cover these interfaces.

It would be true to say that the use of a business-related
interface reference model has caused some friendly
controversy within the working group. It is important to
realise that particular systems do not necessarily fall into
one business activity segment, but may span several as can
be seen from the following matrix. This shows the
mapping of typical utility systems to the business activities
of the IRM.

M
et

er
in

g
&

 L
oa

d
M

an
ag

em
en

t
 W

or
k

M
an

ag
em

en
t

Operational planning

Records & asset management

Network operation

Maintenance & construction

Network extension planning

Customer inquiry

Meter reading & control

External departments

 S
C

A
D

A
 -

D
M

S

 N

et
w

or
k

C
al

cu
la

tio
n

G

IS

C
us

to
m

er
 I

nf
or

m
at

io
n

 B

ill
in

g
Sy

st
em

Business function
Sy

st
em

s

Figure 4: Function Oriented Information Technology

IRM Components

In this section the definitions of business activity segments
defined above are further extended into:

• Components
• Functions within each component.

Business activity
segment

Component Function

Operational
planning and
optimisation

Network operation
simulation

Load forecast

Network calculation
Supply restoration
assessment

Switching simulation
Incident simulation

Switch action
scheduling /
operation work
scheduling

Release/clearance remote
switch command
scheduling

Field crew loading analysis
and work order scheduling

Power import
scheduling and
optimisation

Customer outage analysis
and information

Records and asset
management

Substation and
network inventory

Equipment characteristics

Connectivity model

Substation display
Telecontrol database

Geographical
inventory

Network displays
Cartographic maps

Business activity
segment

Component Function

Network operation Network operation
monitoring

Substation state
supervision

Network state supervision

Switching action
supervision

Management of data
acquired from SCADA
and metering systems
Management of data
acquired through operation
(field crews, customers,
scheduled and unscheduled
outages)
Alarm supervision

Operator and event logs

Network control User access control
Automatic controls:

Protection (fault clearance)

Sectionalising
Local voltage/reactive
power control
Assisted control:

Remote switch control
Load shedding

Voltage reduction
broadcast

Local control through field
crews

Safety document
management

Safety checking and
interlocks

Major incident co-
ordination

Fault Management Trouble call handling and
coherency analysis (LV
network)
Protective relays analysis

Fault location by analysis
of fault detectors and/or
trouble call localisation
Supply restoration
assessment
Customer incident
information

Operation feedback
analysis

Incident simulation

Network fault analysis

Quality index analysis

Device operation history

Operation statistics
and reporting

Maintenance information

Information for planning

Information for
management control

Network
calculations – real-
time

Load forecast

Energy trading analysis

Real-time network
calculation

Protective relays analysis
Adaptive relay settings

Dispatcher training SCADA simulation

Business activity
segment

Component Function

Maintenance and
construction

Maintenance works
scheduling and
control – power
system

Periodic maintenance
scheduling and
unscheduled work orders

Work order estimates
Maintenance crew
management

Work state supervision
Materials inventory

Telecommunicatio
ns network
maintenance

Telemetry

Communications links

Servers/workstations/perip
herals

Construction work
scheduling and
control

Work scheduling

Work order estimates

Construction crew
management

Work state supervision
Materials inventory

Network extension
planning

Network
calculations

Load forecast

Network calculation
studies

Construction
supervision

Construction costing

Work management

Customer inquiry Customer
information

Address/network
connection

Customer data
Interface to utility’s
website

Outage
management

Outage reporting
(Estimated-time-to-restore)
Network fault analysis

Crew management Allocation/tracking

Computer-aided dispatch
Meter reading and
control

Meter reading Load characteristics

Consumption meters

Quality factors

Load control Meter parameter telesetting
Dynamic tariff application

Power modulation

External to DMS Energy
Management
(EMS)

Transmission

Generation

Weather Forecast information
Predicted dispatch of field
crews
Thermal ratings of major
lines
Lightning detection

Fire risk

Energy trading Pricing
Customer account
management

Credit status

Outage history

Financial Revenue information

Costs

Business activity
segment

Component Function

Overhead

Premises Address

Source substation
Meter information

Human resources Health/safety reporting

Staff credentials
Hours on shift information

Middleware architecture and services

Distributed object technology aims at the integration of
distributed, object-based systems. Components are
independent software entities that encapsulate (private)
data the component needs to know to perform its function.
All component behaviour is defined by the component
methods; and a user (client in a client-server relationship)
can only access the component’s data by invoking these
public methods. Components can reside anywhere within a
single machine, or they may reside on other machines
connected by the communication network.

Component

Machine

Process

Figure 5: Distributed Components

Middleware is a term used to describe the software needed
to support interactions between clients and servers. An
interaction may start, for example, with an application on
the client side that is used to invoke a service or method
owned by an object. An application will use middleware to
manage the transmission of the request over the network
through the use of the communication services available
from the selected Communication Service Provider (CSP).
All communication actions and responses are enabled by
the protocol of the selected CSP. Mainly, Middleware aims
to make a heterogeneous, distributed environment appear
as a single "virtual machine" that provides access to all
resources and business components on the network, hiding
the complexity of the necessary communication protocols
and services. Middleware also hides the details of how the
CSP implements the communication protocol.

Middleware has emerged as a strategic piece of industrial
software and particularly of client/server systems.

The middleware market can be broken into the following
general categories:

• Database Middleware: allows clients to invoke
Database services across multi-vendor databases. This
middleware is defined by de facto standards as ODBC,
DRDA, RDA etc.

• Transactional Middleware: Software that allows
clients to invoke services across multiple transaction
servers.

• Network Operating System Middleware: NOS
middleware extends the local operating system’s reach
to include networked devices. It provides a distributed
computing environment that creates a “ single system ”
out of the diverse resources distributed on the network.

• Message Oriented Middleware: MOMs allow
general-purpose messages including procedures, data
and controls to be exchanged between clients and
servers via messages. MOM is a loosely coupled
exchange across multiple operating system. Program-
to-program communication via MOM is also referred
to as “asynchronous”.

• RPC Middleware: Enable a programmer to develop
an application in which different procedures can be
distributed and remotely invoked across one or more
networked systems, yet appear as though they were
executed on the user’s system. These procedures are
synchronous in nature.

• Object Request Broker Middleware: allows clients
to invoke methods or components that reside on a
local/ remote server. This middleware mainly revolves
OMG’s CORBA compliant ORB services and
Microsoft’s DCOM services. .

• Middleware Adapters: Middleware Interface
Adapters may bridge CORBA compliant ORB-
services from any vendor, DCOM- services, and
application-specific ORB-services.

Information on the Component. Instead of building
monolithic or two-tier applications, organizations (both
vendors and utilities themselves) must break applications
and subsystems into components. Components enable the
utility and the vendor of application software to react
quickly to changes in the business environment, allowing
them to update only the parts of a DMS application that
require it. In this context a “Component” may be a classic,
procedural or a fully object-oriented application build on
top of the latest technology.

These components can be distributed across the network
(LAN, WAN and Internet), enabling flexible deployment
of DMS applications in the utility-wide ICT-architecture.

Information on the Component Adapter. Proprietary,
vendor-dependent solutions hinder the interoperability on
which distributed (object) computing is based if deployed
directly in the utility-wide ICT-architecture. However, each
vendor of today’s DMS applications has its own
application architecture, its own API and different
mechanisms of interfacing the application with other
products of the same vendor.

To create cross-platform and cross-vendor utility solutions,
it is necessary to adopt clear interface specifications for
well-defined Components enabling the (ideally) “hot plug-
in” of additional components without altering the ICT-
architecture or changing applications. To be able to use
these standard interfaces, it is necessary to bridge the gap
between the standard interface on one side and the vendor-
specific way of interfacing its own Component to the
outside world on the other side. The component adapter is
the part in WG14’s Interface Architecture that bridges that
gap. The component adapter establishes the “component
view” of the application (component) it “shields”: it
translates whatever is behind it to an Object-Oriented view.

In the three following paragraphs, we expose the
characteristics of two well-known middleware
environments in the IT market, CORBA and DCOM. The
third paragraph tries to make a brief comparison between
the two.

CORBA (Component Object Request Broker
Architecture). CORBA is a de facto-standard promoted
by Object Management Group, which is an international
organisation supported by over than 750 members. The
OMG promotes the theory and practice of object-oriented
technology in software development. OMG established the
Object Management Architecture (OMA) which provides
the conceptual infrastructure upon which all OMG
specifications are based.

The basic components of a CORBA-compliant ORB are as
follows:

• ORB Core: The ORB core is the object bus that
provides the middleware that mediates the interactions
transparently between client and server applications

• Client Stubs: Client stubs are static bindings that will
provide access to the IDL-defined operations of an
object in a programming language the IDL definition
has been mapped.

• Dynamic Invocation Interface: Through the Dynamic
Invocation Interface, clients who do not have any static
bindings to the server object can construct requests on
the fly. Clients literally compose the request at run
time and dispatch it to the server

• ORB Interface: The ORB interface goes directly to
the ORB, which is the same for all ORBs. It provides
interfaces that are common to all objects and therefore
are useful for both clients and implementations of
objects.

• Implementation Skeleton: The implementation
skeleton is the static interface through which the ORB
calls the methods that implement each type of object.

• Dynamic Skeleton Interface: In CORBA 2.0, the
dynamic skeleton interface (DSI) is the server-side
analogue of the dynamic invocation interface. It is part
of the bridging mechanism between different ORBs.

• Object Adapter: It handles services such as the
generation and interpretation of object references,
method invocation, security of interactions, object and
implementation activation and deactivation and the
registration of implementations.

• Interface Repository (IR): By querying the IR at run-
time, it is possible for a client to encounter an object
whose interface was not known at compile-time. Thus

the client is able to determine what operations are valid
for the object and then make an invocation on it.

• Implementation Repository: The implementation
repository contains information that allows the ORB to
locate and activate object implementations.

Providing application invocations over a network is not
sufficient for distributed computing. With respect to
distribution services, the CORBA services offer a set of
services assembled in one distributed computing
specification, including DCE and DCOM.

Object Request Broker Core

Dynamic
Invocation

Interface (DII)
IDL Stubs ORB Interface

IDL
Skele-

ton

Object
Adapter

Client Object
Implementation

Dyn.
Skele-

ton
Interface

Repository
Implement.
Repository

Figure 6: Basic Components of a CORBA-compliant ORB

Table 1 : CORBA Object Services

Service Definition

Lifecycle Manages the creation and destruction of objects.

Naming Manages the naming of objects within defined naming contexts.

Events Manages channelling of events between event producers and consumers.

Persistence Enables objects to persist beyond the completion of the process that creates them.

Externalization Supports export and import of object state information.

Relationships Manages bi-directional associations between objects.

Transaction Manages atomic units of work involving operation invocations.

Concurrency Manages concurrent access to shared objects.

Security Defines interfaces for authentication and authorization of operations on objects.

Time Synchronizes clocks in a distributed system

Licensing Manages licensing agreements between objects.

Properties Manages dynamic named attributes associated with objects.

Query Provides SQL-like access to sets of objects.

Collections Supports groupings of objects

Trading Enables clients and servers to match services with needs.

Startup Service Supports sequences of requests issued on ORB start-up and shutdown to establish predictable
server configurations on start-up and restart.

Change Management Provides versioning and composition of objects that change over time.

Object Request Broker

Object Services (COSS)

Application Objects Common Facilities

Naming
Lifecycle
Event Notification
Persistence
Concurrency
Relationship
Externalization

Transaction
Security
Time
Properties
Query
Collection
Licensing

Compound Docs.
Help Facilities
Text Checking
Desktop Mgmt.
Scripting Facility
Calendar, Time
Workflow Facility

Standardized by
vertical-market
organizations,
e.g. Imagery,
CIM, Accounting,
Inf. Superhighway

Figure 7: Object Management Architecture

The main services of the CORBA-compliant Object
Adapter are listed below and it applies the numbering
scheme of Figure 8:

• Register Server Classes with the Implementation
Repository. Object Implementation classes are
registered a and stored as a persistent store in this
repository.

• Instantiate new objects at run time. The object
adapter is responsible for creating object instances
from the implemented classes. The number of
instances is dependent of the incoming client traffic
load.

• Generate and manage object references. The object
adapter assigns references (unique Identifiers) to the
new Components objects it creates. The Object adapter
is responsible for mapping between the
implementation- specific and ORB- specific
representations of object references.

• Broadcast the presence of the object servers. The
object adapter may broadcast the services it provides
on the ORB and it may respond to directory type
queries from the ORB- core. It is in charge to let the
outside world know of the services it manages.

• Handles incoming client calls. The object adapter
interacts with the top layer of the ORB core

communication stack, peels off the request and hands
it to the interface stub. The stub is responsible for
interpreting the incoming parameters and presenting
them in a form that's acceptable for the object's method
invocation.

• Routes the up- call to the appropriate method. The
object adapter is implicitly involved in the invocation
of the methods described in the stubs (or the skeleton),
e.g. the object adapter may be involved in activating
the implementation and it can authenticate the
incoming requests.

The Interface Definition Language (IDL) is part of the
CORBA standard and is used for the definition of the
interfaces of CORBA compliant objects.

An IDL compiler translates this IDL files in C++ header
and source code files. The header file, called IDL C++
header, is used both by the client and server part of the
application. The source code files contain the stub and
skeleton code that must be compiled and linked with the
client and server application respectively.

DCOM (Distributed Component Object Model).

DCOM is based on Microsoft’s Component Object Model
(COM). COM is a binary standard, which means that COM
interfaces are defined by the layout of virtual function
pointer tables (vtables), in memory. There is also a

standard way how functions are called through the vtables.
Thus, any language that can call functions via pointers (e.g.
C, C++, Smalltalk, Java, and even Visual Basic) all can be
used to write components that can interoperate with other
components written to the same binary standard.

Client
Object Data

vtable pointer pointer to f1

pointer to f5
pointer to f4
pointer to f3
pointer to f2

function f1
function f2
function f3
function f4
function f5

Client Object Server Object
Data

Table of function
pointers (vtable)

Function
implementations

Figure 8: Binary COM Interface

Each entry in the vtable contains the address of a function
implemented by the Component. In COM notation, this
vtable is called interface. In an analogous way, the vtable
pointer is call interface pointer. A client can communicate
with the COM application component only through an
interface. The vtable and the function implementations are
shared among multiple instances of the same object class
which reduces memory requirements.

COM preserves completely encapsulation of data and
processing. When a client has access to a COM
component, it has nothing more than an interface pointer
through which it can access the functions of the interface.
Therefore, client objects will never have direct access to
the server object’s data. This encapsulation is what allows
COM to provide a binary standard that allows local and
remote transparency.

The Component Object Model (COM) provides an inherent
means (within the Windows operating system) for inter-
applications communication. The basic COM services
enable objects with standard interfaces to communicate,
assuming that each object or is operating within the same
process space, or to put it more simply, the same computer.
COM uses a proxy/stub methodology for marshalling
communications between client and server processes.

Client Process

A

Object reference

proxy

Server Process

stub Object
A

Figure 9: The Proxy/Stub Methodology of COM

DCOM adds three elements for remote server processes:

• techniques for creating a remote object(s)
• protocols for invoking that object’s methods
• mechanisms to ensure secure access

At a high level, DCOM accomplishes the remote server
processes through adding Network Transport services
(NTS) to the COM proxy/stub.

Remote Client Process

A

Object reference

proxy

Component Process

stub Object
A

N
T
S

N
T
S

Figure 10: The Proxy/Stub Methodology of COM

DCOM uses a system registry to map the names of remote
server objects, and the machines or process spaces on
which they are located. Each registry is updated with a
client-specified unique ID when an object is created.
DCOM supports a variety of communications protocols for
identifying remote machines, depending on the network
protocol in use.

Network Transport services are actually provided in
DCOM through the same mechanism as in CORBA, that is,
through Remote Procedure Calls (RPCs). The specific
RPC protocol used in based on OSF DCE (Distributed
Computing Environment).

OLE comes with a bunch of services that are implemented
on COM. Each of these technologies is defined by a set of
COM interfaces. Every interface specifies a set of
semantically related functions.

• Structured Storage and Persistent Objects for storing
components of different types in the same file.

• Uniform Data Transfer defines a standard way for data
transfer between components and applications. It
provides the functionality to represent different kinds
of data transfers through a single interface.
Furthermore, it defines a simple mechanism of change
notification.

• Naming and Binding services (Monikers) for the
creation and initialization of COM objects

• Connectable Objects, a kind of event service that
makes it easy for clients to receive notifications of
interesting events

• OLE Automation refers to the ability of an application
to define a set of properties and commands and make
them accessible to other applications to enable
programmability. OLE Automation is treated in more
detail below

• Compound document services such as embedding and
linking and in-place activation. These must be used by
both the client (container) and server objects

• services for controls. The arrows indicate that controls
depend from almost all other technologies.

Microsoft’s Interface Description Language (MIDL) is
based on the RPC IDL that is used in the Distributed
Computing Environment (DCE) of the OSF. MIDL is used
for the description of interfaces, operations, and attributes
to define remote procedure calls. MIDL was tailored to
support object-oriented method calls. The main purposes
MIDL is the generation of proxy and stub code necessary
for local and remote communication and the generation of
type libraries that are used by OLE Automation clients and
servers.

OLE Automation is COM’s support for dynamic interfaces.
It provides a particular interface called dispatch (or
IDispatch) interface that allows applications to expose their
services for clients written in simple languages such as
Visual Basic. Applications providing a dispatch interface
are sometimes called programmable applications.
Examples for such applications are Microsoft’s office
applications such as Excel and Word.

Information on Middleware Interface Adapter. The
COM / CORBA Interworking Specification from the
Object Management Group (OMG) is a standard for
interoperability between COM and CORBA. Products that
implement this standard allow CORBA objects to be used
from COM and vice versa. There are two parts to the
interworking specification. The first part specifies OLE
Automation-to-CORBA interoperability and the second
part specifies COM-to-CORBA interoperability.

The two levels are mapping (one-way interoperability) and
interworking (two-way interoperability). A mapping
solution makes an object from one system available to the
other system (e.g., CORBA objects are available to COM)
but not vice versa. An interworking solution makes objects
from one system and vice versa (e.g., CORBA objects are
available to COM and COM objects are available to
CORBA).

CORBA server COM client

Target COBRA object COM interface pointer

CORBA View
(a real CORBA object)CORBA object reference

Bridge

Figure 11: CORBA/COM Interworking Architecture

Differences between CORBA and DCOM

Despite some similarities, there are major differences
between CORBA and COM in the way they implement
their interfaces. COM specifies a series of interfaces that
components must implement to interact with other

component objects. All these interfaces must derive from a
base interface. CORBA does not specify a single base
class, and vendors get to implement their own.

CORBA is a specification without a reference
implementation. Its lack of implementation detail is both
its greatest strength and most severe limitation. While
providing the flexibility for more creative vendor
implementations, it also opens up issues such as
inconsistent administration, incompatible ORBs, and non-
portable servers. Microsoft COM, on the other hand, is
very specific in its implementation detail, but this tight
control can lead to non optimal solutions, especially in
terms of performance.

COM is expected to become an industry standard in the
desktop market. And many vendors are working to
ensure that COM and CORBA will be interoperable. There
is little doubt that the Windows NT Operating System will
continue to grow as a replacement for Unix systems. If this
becomes a widespread reality, with major hardware
vendors porting and supporting Windows NT, Distributed
COM is bound to play a prominent role in the Distributed
interoperable objects arena.

Information Exchange Model

IEC 61968 Part 1 mandates that any compliant system shall
include an Information Exchange Model (IEM). This may
be physically distributed, but there can be only one logical
IEM within a system.

The IEM contains descriptions (metadata) of the contents,
syntax and semantics of information to be exchanged
between components. This is sometimes referred to as a
data dictionary. This information must be held in a
publicly accessible, yet secure, manner.

It is important to understand that we do not advocate a
centralised database; on the contrary, data is best held close
to the component application where it is used. The purpose
of the IEM is to facilitate the exchange of information
between discrete databases associated with each component
application.

Information is exchanged between components by the use
of one or more events, whose types are defined in the IEM.
The IEM contains names of:

• primitive data types,
• business object types (e.g. Breaker, outage schedule),
• names and datatypes of attributes of business objects

(e.g. “in-service”, “live”),
• relationships between business objects (e.g. “owned

by”, “connected to”),
• named event types which act on objects (e.g. Object

creation/deletion, attribute update).

Event messages are managed on a “publish and subscribe”
basis. A component can register itself as a publisher or
subscriber of a particular type of event message. In
addition, the component can register the context, real-time,
study or test, for which it subscribes to or publishes a
particular event type.

Maintenance and support of the IEM is also defined. It
must be possible to:

• allow dynamic changes to the model without
wholesale disruption to operation.

• validate its completeness and accuracy where possible
(e.g. enforcing the uniqueness of names).

• synchronisation of components over updates using
version control.

Event history, security, error reporting

IEC 61968 Part 1 also specifies the ground rules which
ensure that compliant systems are maintainable and secure
in their operation. This is done by specifying:

• an event history component
• security and authentication features
• error message handling

A compliant system must provide a generic event history
facility as a component, where all or selected information
exchanges are saved in a persistent store. A major benefit
is to allow the taking down and bringing up of a component
application without taking down the remaining
components. Events for the affected application are
recovered from the event history for the interim when the
component was unavailable. Requirements for the event
history include:

• The event history’s schema is based on the metadata
held in the IEM.

• Each event is individually time-stamped.

• IEM versions and component versions are supported.

• The event history component includes an Inter-
application supervisor which enables the analysis of
any of the application component interfaces. This can
be enabled and disabled and is provided to give
visibility to the performance of specific interfaces, so
that bottlenecks can be identified and system
availability ensured.

• The event history allows transparency to event-
publishing components as to the availability of its
subscribers and allows this to be managed externally to
individual components.

A compliant system must also support security and
authentication features. This covers both management of
the integrity of data exchanged between components and
also protection from accidental or intentional unauthorised
access. Security functions are provided in two ways:

• Each component is responsible for ensuring that its
users have the necessary authentication in order to
perform a designated function.

• In addition a security agent is specified with
responsibility for enforcement of authentication,
encryption, access control and maintenance of security
across the system as a whole. There will be only one
security agent within a system.

Within IEC 61968 Part 1 only general statements can be
made about error-handling since generally the
requirements are specific to each component interface.
Nonetheless it is required that:

• Each error report must contain sufficient information
to make the report useful!

• There shall be different types of errors: warnings, non-
fatal errors and fatal errors.

NEXT STEPS

New Work Item Proposals

After IEC 61968 Parts 1 and 2, the next stages are:
Part 3: Interface standard for Network operations
Part 4: Interface standard for Records and Asset

Management

The Working Group is currently putting together new work
item proposals covering this work for authorisation by the
IEC. It is envisaged that the two specifications would be
developed in parallel using the methodology described
above, that is:

• The development of detailed use cases
• Static and dynamic object definitions
• Sequence and activity diagrams
• Component and deployment diagrams
• Inter-component infrastructure definitions in UML
• The development of the Interface Exchange model
• Development of prototypes of the interface

Funding needs

It will be appreciated that the research, analysis and hard
work associated with the work of WG14 is very large. So
far it has been undertaken by “volunteers”. The next stages
described in the paragraph above will require prototypes to
be developed to ascertain the feasibility and practicality of
the component interfaces that will be defined.

The Working Group would be interested to hear from any
partnerships of utilities, research associations and vendors
who would be interested in participating in these
developments.

New CIRED working group

Historically, the CIRED WG 02 “Distribution Automation”
analysed the business applications and produced
recommendations to group them in activity-based
segments.

The IEC WG14 “System Interfaces for Distribution
Management” started from the CIRED WG02 final report.
As this group is mainly composed of DMS manufacturers,
it was very important to have a better feed-back from
Utilities on WG14 work, and standard elaboration. As a
consequence it has been decided to promote the creation of
a new CIRED working group. Therefore a proposal has
been made at the CIRED level at the end of 1998. This
group should be created in 1999.

This new group will certainly focus on the following items,
as they have been mentioned in the proposal :

• State of the art concerning the interoperability of
Distribution Management Applications: the point of
view of the utilities.

• Database management: practices and tendencies.
Proposals for optimal database sharing between DMS
applications.

• Interest and applications of the Distribution
Management Interface Architecture proposed by the
IEC WG14.

The final report of this group should be very valuable for
the cause of interoperability in DMS, as it will reflect the
views of the Distribution Utilities that are members of
CIRED.

The creation of this group will reinforce the elaboration of
the standard and it will help in delivering a standard which
satisfies both vendors’ and utilities’ needs.

