
SELECTION AND MANAGEMENT OF DISTRIBUTION TRANSFORMERS
USING ARTIFICIAL NEURAL NETWORKS

  J. A. Jardini     H. P. Schmidt     C. M. V. Tahan S. U. Ahn
PEA - Escola Politécnica - Universidade de São Paulo Empresa Bandeirante de Energia

CP 61548 - 05424-970 - São Paulo, SP - Brazil São Paulo, SP - Brazil
jardini@pea.usp.br

CED - Centro de Excelência em Distribuição

This work presents a methodology for distribution transformer
rating selection and management. Measured or estimated daily
load profiles are used to determine the transformer’s loss of life.
Loss of life values are obtained for a number of transformers and
are stored together with the corresponding load profiles in a
database of patterns. The expected loss of life for a transformer
not included in the database is obtained by using both
classification and interpolation through artificial neural
networks.

1. INTRODUCTION

Current practices in Brazil for distribution transformer load
management are based on the expected loss of life of the
transformer. The loss of life is computed using forecasted
demand (kVA) values that are obtained from a statistical
correlation between demand and energy (statistical kVA, or
kVAs function).

A first improvement to the current methodology was
proposed in [1]. Instead of the kVAs function the proposed
approach used the transformer daily load profile. However,
this procedure was inherently very time consuming from
the computational point of view, so further improvements
were required. This paper thus represents a second and
important extension where the focus is placed on
computing time. Detailed loss of life calculations are
carried out for a small number of transformers for which
the daily load profiles are known. Both the load profiles
and the corresponding loss of life values are stored in a
database of patterns. The loss of life value for a transformer
not included in the database is obtained using the loss of
life value of the most similar curve in the database.
Therefore, the estimation of a loss of life value consists in a
search procedure in the database.

This paper is organized as follows. Section 2 presents the
loss of life calculation for a transformer with a known daily
load profile. Section 3 presents the loss of life estimation
for a given transformer (not included in the database) based
on the selection of the best pattern in the database. Various
techniques were considered for this selection, namely
cluster analysis, euclidean distance and artificial neural
networks. The results obtained through each one of these
techniques are presented in the same section. Finally,
Section 4 presents the conclusions of the paper.

2. LOSS OF LIFE CALCULATION

The loss of life calculation is described in detail elsewhere
[1-3] and is summarized below.

2.1 - Daily Load Curve

The transformer daily load curve yields the demand
through the transformer at regular time intervals. In this
work 15-minute intervals are used, so a daily load curve is
made up of 96 pairs of time and demand values. In order to
guarantee a representative set of field data, a total of 802
days of measurements were collected from operating
transformers from the 3 electricity utilities in the state of
São Paulo. A further conversion of demand values in kW to
per-unit values was required so as to obtain homogeneous
curves. Hence, all measured values were divided by a base
demand (Dbase) equal to the transformer’s average demand
(monthly energy divided by 720 = 24 * 30). Since each
transformer was monitored during 15 days in average,
variations were observed from day to day in each
transformer. In order to take into account these variations,
two daily curves were obtained from the measurements: a
mean curve and a standard deviation curve. These curves
give the mean and standard deviation values, respectively,
in each 15-minute interval for each transformer. Both
curves will be collectively referred to as (m, s) curves. Fig.
1 shows the mean and standard deviation curves obtained
for one of the measured transformers.

2.2 - Ambient Temperature

When performing annual loss of life calculations (or its
inverse, life expectancy) the annual average ambient
temperature is normally used. However, since in some
cases the daily load peak occurs at night (when the ambient
temperature is lower) and in other cases the peak occurs
during the day, the ambient temperature was also
represented by daily curves. In this case a mean and a
standard deviation curve were defined, which allow for
variations observed in ambient temperature in different
days. Fig. 2 shows an example of mean and standard
deviation curves for ambient temperature.
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Fig. 1. Mean and standard deviation load curves

2.3 - Probability Associated with Load and
Temperature Values

The loss of life of a transformer depends on the effective
values of load and temperature in each instant. Values in
Figs. 1 and 2 are not suitable for loss of life calculation
since they are just average values. For this reason, in the
present work, load and temperature are represented by a set
of curves that give, in each instant, load and temperature
values associated with a probability value. The particular
load value at time t

L(t) = m(t) + k.s(t) (1)

represents a load value that will not be exceeded with
probability P, where m(t) is the mean load at time t and s(t)
is the corresponding standard deviation. For instance, P =
90% for k = 1.28 when normal (gaussian) distribution of
load values is assumed (normal distribution is assumed
throughout this work).
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Fig. 2. Mean and standard deviation curves for ambient temperature

Using k as a parameter, the set of 11 load curves
represented in Fig. 3 is obtained, which correspond to the
following values of P: 2.5%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90% and 97.5%. A particular value in the
80% probability curve is interpreted as representing the
load value associated with probabilities in the range
between 75% and 85%, and therefore it has an associated
probability of 10%. It should be noted that in this work it is
assumed that the transformer loading remains the same
throughout its lifetime. A similar set of 11 curves is
obtained to represent the ambient temperature, as shown in
Fig. 4.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 3 6 9 12 15 18 21 24

Time (h)

pu

90%

80%

mean

Fig. 3. Set of load curves

2.4 - Transformer’s Life

By selecting a value for the transformer rating and
combining one load curve from Fig. 3 and one ambient
temperature curve from Fig. 4, it is possible to obtain the
daily temperature curve for the transformer’s hot spot, and
thus the corresponding loss of life after 1 day of operation
[3]. This loss of life value is associated with two
probability values, one from the selected load curve and the
other from the selected ambient temperature curve.
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Fig. 4. Set of ambient temperature curves

The total loss of life value can then be obtained by
averaging loss of life values obtained through the
combination of all load curves (index i) and all ambient
temperature curves (index j):

j
ji

iijtot QQLlLl ����
,

(2)

where Lltot is the total loss of life, Llij is the loss of life
value corresponding to load curve i and ambient
temperature j, and Qi, Qj are the corresponding probability
values. Fig. 5 shows an example of life expectancy
calculation as a function of the transformer loading index.
The transformer loading index is defined as the ratio
between the maximum value of the mean curve in kVA and
the transformer rated power in kVA, and it can be varied
through a multiplying factor applied to all values in all
curves.



This procedure is obviously very time-consuming if
applied to each distribution transformer. In the state of São
Paulo, only Eletropaulo Metropolitana and Empresa
Bandeirante de Energia (both created from former
Eletropaulo - Eletricidade de São Paulo SA) account for
some 300000 transformers in the distribution network.

3. LOSS OF LIFE ESTIMATION

The life expectancy estimation for a given transformer is
based on the comparison of its daily load curve with the
daily load curves of sample transformers for which a
detailed loss of life calculation was carried out as described
in the preceding section. The following techniques were
employed:

- classification through Cluster Analysis;
- classification through Euclidean distance;
- classification using the artificial neural network model

LVQ (Learning Vector Quantization);
- interpolation using the artificial neural network model

MLP (Multi Layer Perceptron).

The first three techniques fall into the general category of
classification, whereby a curve (m, s) that is most similar to
the load curve (m’, s’) of the transformer of which the loss
of life is to be estimated (testing curve) is selected from the
database.
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Fig. 5. Expected life as a function of transformer loading index

Once a daily load curve is selected in the database, its
associated loss of life value is assigned to the testing curve.
In the fourth technique an MLP model is set up and trained
with values of load and associated loss of life extracted
from the database. Afterwards, while in processing mode,
the MLP is capable of producing an estimate for the loss of
life given a set of load values. The application of these
techniques will be described in greater detail in the
following subsections.

3.1 - Load Curve Database of Patterns

For a given daily load curve the 96 mean values were
combined with the 96 standard deviation values, yielding a
192-value composite curve. This composite curve was
further normalized by dividing all values by the maximum
value, so all composite curves possess a maximum value of
1.0. This normalization was required because the relevant

feature for the classification procedure is the curve shape
(given by the relative values among all time intervals) and
not the particular values at each time interval. Fig. 6 shows
an example of a normalized composite (m, s) curve.

The classification algorithms were then applied to the
normalized composite curves. A value of life expectancy
(l) is associated with this curve, thus forming complete (m,
s, l) curves. The database is composed of (m, s, l) curves
concerning 45 transformers carefully chosen among those
available from the measurement set (factors such as the
predominant type of consumers  - residential, commercial,
etc. - were considered for inclusion in the database). These
45 curves will be referred to as training curves. The (m, s,
l) curves were also obtained for 6 other transformers that
were not included in the database (total of 51 curves). The
purpose of these 6 new curves is to evaluate the efficiency
of each technique employed for estimating the life
expectancy and for this reason they will be referred to as
testing curves.

3.2 - Cluster Analysis

In this case the FastClus algorithm was used. This
algorithm is part of the Statistical Analysis System (SAS)
[4]. Let a be the number of curves to be classified, and b
the number of categories (clusters) into which the a curves
will be classified (b must be specified by the user). In a
first step, the algorithm creates the b categories which will
accommodate all a curves, using the euclidean distances
among the curves. In a second step, a brand new curve that
is to be classified (therefore not belonging to the set of the
original curves) is assigned to one of the existing clusters
through the minimum distance criterion.
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Fig. 6. Normalized composite (m, s) curve

In this work, 45 clusters were created from the 45 training
curves (a = b = 45). The 6 testing curves were then
classified using the algorithm. Once a category was found
for each one of these 6 transformers, the life expectancy
curve of the selected category was assigned to each
transformer. Fig. 7 shows the daily load curves for
transformer T1 (belonging to the set of 45 training
transformers) and transformer T2 (belonging to the set of 6
testing transformers). Due to the similarity between the
daily load curves of transformers T1 and T2, the latter was
assigned to the same category of T1. Fig. 8 shows the life
expectancy curve of transformer T1, which was also
assigned to transformer T2, and the true life expectancy
curve of transformer T2 calculated according to subsection
2.4.



As the magnitude of mean values differs considerably from
the magnitude of standard deviation values in the load
curve (Fig. 1) and the FastClus algorithm uses the
euclidean distance as classification criterion, other curve
compositions aimed at reducing the difference between
those magnitudes were studied. Besides the base case (m,
s), the following curve compositions were tested:

- (m, (m+s));
- ((m+0.525s), (m+0.840s));
- (m, (m+1.280s)).
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Fig. 7. Classification of the curve of transformer T2 into the category
represented by transformer T1
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Fig. 8. Comparison between true and assigned life expectancy curves for
transformer T2

As the composite curve is only used to determine the most
similar curve to a given curve, the different compositions
above did not interfere in the loss of life calculation. In all
compositions studied, the classification results were the
same as in the base case (m, s).

3.3 - Euclidean Distance

In this case, euclidean distance was also used as criterion
for composite curve classification. However, a slight
modification was introduced in the computation of the
distance, aiming at varying the relative importance of
different points in the curve. The modified euclidean
distance was defined as follows:
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where:

)2,1(ED = Euclidean distance between a training curve

(1) and a testing curve (2);
i = daily load curve time index

im1 = i th mean value of training curve;

im2 = i th mean value of testing curve;

is1 = i th standard deviation value of training curve;

is2 = i th standard deviation value of testing curve;

ii �� , = weights.

It should be noted that different values for the weights can
be used so as to take into account the greater importance of
certain periods of the daily load curve, such as the peak
period. In the present work, various weight values were
selected in order to assess the influence of the weights on
the classification results. In all cases the same classification
results were obtained.

3.4 - Classification Through Artificial Neural Networks

In this case the Learning Vector Quantization (LVQ)
algorithm was used [5]. Again, there are two main stages in
the application of the algorithm: training and testing. All 45
training curves were used in the first stage, with
exceedingly good results as to training time (15 seconds on
a 486 Intel-based microcomputer). Once a network is
trained, it can be tested through the Classify option.
Although the available LVQ implementation allows up to 3
refinement levels for the training stage, the first one
(LVQ1) was sufficient for achieving good results.

3.5 - Performance Evaluation

Table I shows the processing time required in the testing
stage for each one of techniques described in the previous
subsections. The machine used is a 486 Intel-based
microcomputer.

Table I - CPU time for classification (testing stage)

Operation CPU time
Loss of life calculation 186 s (1 curve)
FastClus classification 60 s (1 curve)

Euclidean distance classification 0,3 s (1 curve)
LVQ classification 0,03 s (1 curve)

3.6 - Interpolation Through Artificial Neural Networks

In this case, an implementation of the Multi Layer
Perceptron (MLP) paradigm using Backpropagation
training was used [6]. A 4-layer network was specified,
with 192 units in the input layer (96 mean values and 96
standard deviation values), two hidden layers with 12 and



10 units respectively, and the output layer with 14 units.
These 14 units represent different life expectancy values
for different loading conditions (loading index ranging
from 70% to 200% in 10% steps).

A total of 80 normalized curves (see Figure 6) were
assembled using available data from 80 operating
distribution transformers (1 curve for each transformer).
These transformers were carefully selected so as to include
typical residential, commercial, industrial and composite
load curves. A set of 14 life expectancy values were
obtained for each curve through detailed loss of life
calculations, using the above loading index values. Out of
these 80 curves, 56 curves were used in MLP training and
the remaining 24 curves were reserved for MLP testing,
thus ensuring that none of the testing curves had been seen
by the MLP during its training. As an example, Table II
shows the 14 output values regarding the first training
vector.

Table II - Output values corresponding to the first training vector

Output
variable

Loading
index (%)

Output value
(life expectancy

in years)
1 70 8084.
2 80 5048.
3 90 2800.
4 100 1363.
5 110 581.6
6 120 218.6
7 130 73.07
8 140 21.98
9 150 6.056
10 160 1.558
11 170 0.3810
12 180 0.0900
13 190 0.0200
14 200 0.0040

MLP training was executed using the exponential
smoothing algorithm [6]. Table III summarizes the main
data regarding MLP training in this case.

Table III - Main data for MLP training

Parameter Training session
1 2 3 4 5

N° of iterations (epochs)
performed

500 500 500 500 500

Learning rate 1.0 0.9 0.8 0.7 0.6
Exponential smoothing
coefficient

0.2

Total processing time on a
300-MHz Pentium II based
computer (seconds)

118

Equation (4) was used to compute the evaluation error
produced by the MLP for each output variable:
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where vM is the value computed by the MLP, vr is the
reference value (correct output obtained through loss of life
calculations) and vmin, vmax are the minimum and maximum
values respectively for the output variable. Table IV shows
some statistics regarding the evaluation error produced by
the MLP when the 24 testing vectors were presented to it.

Table IV - Error average, standard deviation and distribution considering
the testing set (24 vectors)

Number of vectors in each error class
Output
variable

Error
average

(%)

Error
std. dev.

(%)

0-
2%

2-
4%

4-
6%

6-
8%

8-
10%

10-
12%

12-
14%

14-
16%

1 2.25 2.98 17 2 3 1 0 0 1 0
2 2.41 3.12 15 4 2 2 0 0 0 1
3 2.35 3.28 15 5 2 1 0 0 0 1
4 1.95 2.90 17 2 3 1 0 0 1 0
5 1.48 2.11 18 2 3 1 0 0 0 0
6 1.07 1.39 18 5 1 0 0 0 0 0
7 0.75 0.99 21 2 1 0 0 0 0 0
8 0.54 0.80 23 1 0 0 0 0 0 0
9 0.47 0.74 23 1 0 0 0 0 0 0
10 0.45 0.76 23 1 0 0 0 0 0 0
11 0.46 0.78 23 1 0 0 0 0 0 0
12 0.48 0.84 23 0 1 0 0 0 0 0
13 0.51 0.83 23 0 1 0 0 0 0 0
14 0.47 0.80 23 1 0 0 0 0 0 0

Regarding Table IV, the values 23 and 1 in the row
corresponding to the 8th output variable mean that this
variable was computed with an error equal or less than 2%
in 23 testing vectors and with an error between 2% and 4%
in 1 testing vector, respectively.

Average errors in the testing set vary approximately
between 0.50% and 2.50%, which are considered
sufficiently low. Processing times spent by the MLP
network are usually negligible; in this case, a total of 0.61
seconds were required to compute the whole 24 vectors (or
approximately 0.025 sec for 1 testing vector), using the
same computer as specified in Table III.

The results obtained in this testing set were considered very
good. For this reason, a decision was made at EBE -
Empresa Bandeirante de Energia so as to start the
implementation of the proposed methodology at production
level. The region corresponding to Jundiaí, a medium-size
city with 1383 distribution transformers, was chosen for
this purpose. Initially, the MLP trained with the 56 selected
transformers was used in the processing of these 1383
testing transformers. As to the evaluation error, a small
fraction of the testing set were computed with unacceptably
large errors, indicating that in this city there might be a few
transformers with daily load curves substantially different
from the 56 training curves, and so preventing the MLP
from exhibiting its generalization capabilities. At present, a
new training set specific for this city is being built. This is



a difficult task, because significant curve patterns have to
be extracted from the set of 1383 transformers, as it was
done in the making of the original 56-curve training set. As
to the processing time, preliminary results confirm one of
the advantages of using the MLP network: 1383
transformers were processed in just 3.24 seconds (or
approximately 0.0023 sec per transformer) using the same
computer as specified in Table III. Note that in this case the
average time required for 1 transformer (0.0023 sec) is
approximately 10 times smaller than the corresponding
value in the 24-transformer testing set (0.025 sec). This is
due to some fixed-time sub-processes within the MLP
execution which do not depend on the size of the testing
set.

Finally, Fig. 9 shows a qualitative representation of the
results obtained with LVQ classification and MLP
interpolation in one of the testing transformers.
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Fig. 9. Life expectancy as a function of transformer loading - results
obtained through analytical calculation, LVQ classification and MLP

interpolation

4. CONCLUSION

In view of the encouraging results obtained in this work,
the proposed methodology [8] is being implemented for
distribution transformer management at Empresa
Bandeirante de Energia. The diagram of Fig. 10 shows the
main components of this methodology.
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