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Abstract: This paper presents a novel landuse based
spatial load forecasting method. Two major improvements
have been made for the landuse simulation process, which
is the core of spatial load forecasting. Firstly, fuzzy logic
technology is applied to address the suitability evaluation
problem, then transshipment model is used to produce an
optimal landuse allocation scheme. The proposed method
has been applied to a real distribution system, and
reasonable results have been achieved.
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1. INTRODUCTION

The first step toward successful distribution planning is
the correct anticipation of load growth which the system is
expected to serve. The distribution load forecast must
predict not only the future loads, but also their locations, in
sufficient geographic detail to allow the planners to locate
and size distribution equipment additions such as
substations and feeders. During the last decades a broad
spectrum of computerized approaches, called spatial load
forecasting (SLF), have been developed for accomplishing
such forecast, ranging from simple extrapolation-based
trending methods to the most complicated landuse
simulation based SLF [1-6]. No matter which method is
employed, the SLF aims to provide a forecast of spatial
load distribution which establishes the loading requirement
that long and short range planning must meet [5].

SLF is accomplished by dividing the utility’s service
territory into a grid of small areas, either uniform or
irregularly shaped, and then forecasting future load for
each area [1]. The trending methods predict each small
area’s load by extrapolating its historical load curve into
the future, and are only applicable to short-range planning
[1,2]. Almost all modern SLF methods for long-rang
planning are based on allocation of previously forecasted
total system load into a grid of uniform small areas. There
are two reasons to do so [1, 2, 6]: 1) Compared with small
area load, which seldom exhibits smooth continuous
growth, system load is easier to be predicted; 2) Load
forecast for distribution system should be consistent with
that for transmission and subtransmission system, which
are planned on system load forecast.

In order to simulate which kind of customers and how
much landuse will be developed in small areas, simulation-

based SLF methods divide electric customers into several
classes, called landuse classes, according to their load and
landuse characteristics [1]. Given typical load curves,
landuses can be easily converted into loads, and vice versa.
Therefore, the landuse simulation process, which simulates
the future development of small areas, is the core of spatial
load forecasting [1, 6]. This paper will focus on addressing
this process.

As shown in Figure 1, landuse simulation process
involves four stages [6]: 1) collecting spatial attributes for
each small area, such as distance to urban pole, highway,
etc.; 2) setting up each kind of customers’ preference and
requirement on spatial attributes, for example, industrial
sites preferred to be close to highways; 3) evaluating how a
small area is suitable to develop some kind of customers by
matching small area’s attributes against customers’
preference and requirement; 4) allocating total landuse
forecast to small areas. In the wake of geographic
information system, spatial data collection is no longer a
major problem. In the second stage, expert knowledge and
linguistic descriptions are often used by planners to set up
landuse classes’ preference on spatial attributes. We are
often heard of such kind of expressions as: if a small area is
moderately close to highway and urban pole, then it is very
suitable for a residential site. Most of these linguistic
descriptions such as close and suitable are fuzzy in nature
[3, 4, 6].

In this paper, fuzzy logic technology and transshipment
model are applied to address the landuse simulation
process. Firstly, we use fuzzy expert systems to simulate
each kind of customers’ preferences on spatial attributes,
which are best to be represented by fuzzy rules. Then
fuzzification, inference and defuzzification methods are
introduced to produce a “score”, which reflects how
suitable a small area is for the growth of some kind of
landuse. After suitability evaluation process, transshipment
model is employed to produce an optimal scheme to
allocate total landuse forecast to small areas, so that all
small areas make the best uses. The second part of this
paper shows landuse simulation process fits well into an
application of transshipment model.

The proposed method was tested on a real distribution
system in north China, and advantages over traditional ones
were demonstrated.



2. MATHEMATICAL FORMULATION OF LANDUSE
SIMULATION PROCESS

In order to find other alternatives to deal with landuse
simulation process, this section presents a mathematical
formulation for spatial load forecasting.

Spatial load forecasting involves a lot of spatial
information collected from Geographic information system.

Let �Layer represents a collection of attribute layers in a

landuse map Map. A rasterization process creates a grid of
uniform small areas while collecting spatial attributes

),( yxF  with respect to small area (x, y).
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From the mathematical point of view, spatial load
forecasting problem can be represented as three mappings:
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Where, 1f  maps spatial attribute 
),( yxF  to landuses

),( yxL , 2f  converts landuses to electric load ),( yxS . In

SLF, 2f  can be further represented as:
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where, m is the number of landuse classes� iLC  is the load

density of class i, i
yxL ),(  and i

yxS ),(  represents class i ’s

landuses and electric load respectively.
After all small areas’ loads are obtained, system load

tS can be calculated by a simple aggregation operator 3f :
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In equations (3) and (4), 2f  and 3f  are two simple

mappings, whose purpose is to convert landuses to electric

load. However, 1f  is highly nonlinear, stochastic, spatial

and time dependent, and too complicate for us to find an

accurate mathematical expression. In fact, 1f  is the

landuse simulation process, which can be further
formulated as a composition of two other mappings:
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attributes to preference score ),( yxP , and ),(),(
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converts preference scores into landuses. It’s obvious that
'

1f  and ''
1f  correspond to the suitability evaluation and

landuse allocation stage, as shown in fig.1, respectively.
The key to landuse simulation process is to find these two
mappings.

In making landuse decisions, we have to determine
which kind of customer will be developed in each small
area, and how many. This procedure can be simulated by an
optimization model, which seeks an optimal landuse
allocation scheme, while subjecting to two major
constraints: 1) for each small area, the total landuses
summed by landuse classes couldn’t exceed the available

landuses 
d

yxL ),( ; (2) for each landuse class, the total

landuses summed by small areas should equal to the

previously forecasted total landuses of this class iL . Thus,

landuse allocation stage can be formulated as:
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Subject to:
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If '
1f  is known, substituting i

yxP ),(  in equation (5) with

(8), the landuse allocation problem will become a
transshipment model. Therefore, we can use transshipment
model to simulate the allocation stage in landuse simulation

process. With ''
1f  in hand, the only problem remained is to

find the mapping '
1f , i.e. how to evaluate the suitability of

small areas for landuse classes.
Fuzzy logic technology has been widely used as

function simulators to deal with problems which are hard to
be solved by traditional methods. Here, fuzzy logic is used

to simulate '
1f , which can be reformulated as:
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Through procedures of fuzzification, inference and

defuzzification, '
1f  produces scores by matching spatial

attributes with preference rules, one score for each class.

3. FLOW DIAGRAM OF SPATIAL LOAD
FORECASTING

This section presents a flow diagram for spatial load
forecasting. As shown in Figure 2, SLF consists of four
interrelated modules. In the first module, rasterization
divides utility’s service territory into a grid of uniform
small areas, and categorization distinguishes one landuse
class from another according to both landuse and load



characteristics. In the second module, end-use load forecast
is to provide the future typical load curves of landuse
classes, which plays an important role in converting system
load forecast to each class’s landuse forecast, and in
translating landuse decisions to load distribution. As to
system load forecast, a variety of forecasting methods can
be used. Although all these steps mentioned above are very
important in producing correct distribution load forecast,
the following sections will concentrate on applications of
fuzzy logic technology and transshipment model to landuse
simulation process.

3.1 Example System and Data Preparation

 In order to help reading, a real distribution system,
located near Beijing, China, is given as an example. At the
present time, the system’s service area is about 20km2. The
planning area is about 30km2, including a high-tech zone in
the south and another development area in the east. There
are no developable areas in the west and north due to
geographical, governmental and environmental restrictions.
As shown in Figure 5, the service area is divided into 108
small areas, each 0.5km long and 0.5km wide. For
simplicity, we classify electric customers into four landuse
classes: industrial, commercial, residential and institutional.
Spatial attributes are collected from GIS platform for each
small area, and grouped into three factors, as shown in
Table 1. Local factors are attributes of the small area itself,
mostly related to the land’s suitability to be built upon in
any manner. To have any possibility of development, a
small area must have terrain that can be built upon. It must
not be precluded from development by law and other
factors. Proximity factors measure influences that are
mainly a function of distance. Surrounding factor indicates
the residential and commercial activities around certain
small area. If commerce around a community is over
developed and saturated, no business would like to enter.

Table 1. Spatial attributes of small areas
Factor Spatial Attributes

Local
Attributes

Undevelopable areas due to geographic,
governmental and environmental
restrictions, etc.

Proximity
Factor

Distance to highway, road, school, urban
pole, district center, etc.

Surrounding
Factor

Residential areas within 0.5km and 1.5km,
commercial areas within 1.5km, etc.

3.2 Preference Fuzzy Expert System

After spatial data collection, we have to set up
preference expert system for each landuse class. In spatial
load forecasting, linguistic descriptions are often used to
express landuse requirements and preferences. For
example, residential customers in Beijing prefer to live
near urban, to be close but not too close to road and
subway in order for easy traffic but avoiding noise, to be in
vicinity of school and marketplace, and in beautiful
surroundings. From this example, we can see that
suitability evaluation is multi-objective. A community in
good surroundings may be far from urban. A compromise
is needed to make a final decision.

Table 2 Preference Fuzzy Expert System for Residential
Customers

Evaluation
Criterion

Weighting
Factor

Fuzzy Rules for
Evaluation

Distance to urban
pole

0.9
VH-SP; H-MP; N-NT;
L-MA; VL-SA

Distance to
district centers

0.8
VH-SP; H-MP; N-NT;
L-MA; VL-SA

Distance to
nearest road

0.8
VH-SP; H-MP; N-NT;
L-MA; VL-SA

Distance to
nearest school

0.8
VH-SP; H-MP; N-NT;
L-MA; VL-SA

Residential areas
within 0.5km

0.7
VH-SP; H-MP; N-NT;
L-MA; VL-SA

Commercial areas
within 1.5km

0.7
VH-SP; H-MP; N-NT;
L-MA; VL-SA

Notes: VH very high, H high, N Normal, L low, VL very
low, SP strongly prefer, P preferred, NT normal, A against,
SA Strongly against. Actual meaning depends on which
spatial attribute it is being applied to.

In order to make multi-objective decisions, weighting
factors with respect to evaluation criteria are set based on
the decision-maker’s preference. For example, weighting
factor 0.9 for “distance to urban” means it is a very
important criterion in deciding whether a small area is
suitable for residence. Table 2 lists the residential
customer’s preference rules we used in the example system.
The last column of this table presents a set of fuzzy rules
used by each criterion. VH-SP is a rule, which means if VH
then SP. VH and SP are fuzzy sets, which will be described
in the next section.



3.3 Fuzzy Logic Techniques Applied to Landuse
Simulation Process

In order to use fuzzy logic technology to solve landuse
simulation problem, there are several issues needed to be
addressed:
1. How to implement linguistic descriptions such as

“close” and “far”?
2. How to evaluate a small area’s spatial attributes against

each criterion using fuzzy rules extracted from
distribution planner’s knowledge and experience, such
as those listed in table 2?

3. How to judge the suitability of small areas by
compromising all evaluation criteria, and produce a
final preference score?
In this paper, three popular fuzzy logic techniques are

used to answer these questions. Membership functions will
be used to convert the input values (crisp spatial data) to
the linguistic descriptions and membership values. The
Mamdani inference is used to aggregate inputs and fuzzy
rules. Centroid rule, which is the popular method to
perform defuzzification in fuzzy logic, will be used to
evaluate the fuzzy output into a crisp one. Fuzzy multi-
criteria analysis is employed to give a compromise
suitability evaluation. The suitability evaluation process,
where fuzzy logic techniques are applied, is shown in
Fig.3. For each small area, suitability evaluation is
accomplished by judging spatial attributes against each
criterion using the min fuzzy inference method, and then
doing fuzzy multi-attribute analysis.

3.3.1 Membership Functions, Fuzzification and
Defuzzification

A fuzzy set is a set containing elements that have
varying degree of membership in the set. Elements of a
fuzzy set are mapped to a universe of membership values,
usually [0, 1], and is termed membership function [3, 4, 7].
In this section, we define five trapezoid fuzzy sets, and use
them as a template. As shown in fig.4, not only
membership values of fuzzy sets but also universe of
discourse are normalized to interval [0, 1]. Using this
technique, we don’t have to define as much fuzzy sets as
the number of spatial attributes previously defined, five is

enough. For example, for “distance to urban”, suppose the
universe of discourse is between 0 and 10km, we can still
use the fuzzy set template mentioned above to describe
fuzzy variables “very close”, “close”, “Normal”, “Far”,
“Very Far”, by normalizing [0, 10] to [0, 1].

Figure 4 Membership functio n
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Fuzzification process converts actual numerical value
(in this case spatial data) to its membership value (fuzzy).
For “distance to urban”, a relative value of 0.3 has a
membership value 1 for “close to urban”. After the fuzzy
inference process, the results should be converted back to
actual crisp output (in this case, suitability score) by a
process called defuzzification. In this paper, the most
prevalent centroid rule approach is adopted.

3.3.2 Min Fuzzy Inference
Min fuzzy inference is a popular approximate reasoning

technique, whose purpose is to aggregate fuzzy information
and fuzzy rules. Suppose there are 2 rules in a knowledge
base, which are described as [8]:

1R : If x is 1A  and y is 1B , then z is 1C ;

2R : If x is 2A  and y is 2B , then z is 2C ;

Where, iA , iB  and iC  are fuzzy sets, whose meanings

depend on where they are applied. Given x= 0x  and y= 0y ,

the fuzzy output 
'C of z can be written in membership form

as:

� � � � � � � �}],,{[ 00' wyxinmmaxw CiBA
ic ii

���� �

  (10)

Applying this technique to each criterion’s knowledge
base illustrated in table 2, we can obtain a fuzzy suitability
evaluation with respect to that criterion. The
defuzzification process described in section 3.3.1 will
output a crisp suitability value.

3.3.3 Fuzzy Multi-Attribute Analysis
It has become more and more obvious that comparing

different ways of action as to their desirability, judging the
suitability of products, determining “optimal” solutions in
decision problems can in many cases not be done by using
a single criterion or a single objective function [7]. As to
the landuse simulation process, whether or not a small area
is suitable as a residential or commercial sites should be
judged by a number of criteria, such as proximity and
surrounding factors. Fuzzy multi-attribute analysis, which
concentrates on decision making with several criteria, is
applied in this paper to aggregate single-criterion
evaluation results obtained by fuzzy inference technique
described in 3.3.1 and 3.3.2.

Recalling the fuzzy expert system illustrated in table 2,



let iw  denote the weighting factor with respect to criterion

i, io denote the single-criteria judgement with respect to

criterion i. The multi-criteria evaluation can be written as:
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i
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Where, E is the final multi-criteria evaluation, iw  acts as a

threshold to let unimportant criteria have less effect on
judgement.

Using table 2 as an example, there are six criteria in
judging small area’s suitability for residence. We use small
area 55 in our example system to illustrate the process of
multi-attribute analysis, as shown in Table 3.

Table 3. Example for Fuzzy Multi-Attribute Analysis

Criteria
Weight
Factor

Spatial
Data io )o,w(1 ii�max

1 0.9 0.27 0.75 0.75
2 0.8 0.10 0.77 0.77
3 0.8 0.30 0.75 0.74
4 0.8 0.40 0.65 0.75
5 0.7 0.65 0.70 0.70
6 0.7 0.94 0.81 0.81
Multi-criteria suitability 0.70

3.4 Landuse Allocation Decision Using Transshipment
Model

The last step of landuse simulation process is the
landuse allocation stage. This stage involves the allocation
of previously forecasted landuses to small areas according
to scores obtained at the suitability evaluation stage. In
order to illustrate how well transshipment model fits into a
landuse allocation decision, we make the following list

(table 4), where ijr  is the suitability score of small area i

with respect to landuse class j. From table 4, we can easily
see that the following optimization model [9] is applicable
to the landuse allocation stage.

�� ijij rxMax                 (12)

Subject to:

i
j

ij ax ��    i
i

ij bx ��     0�ijx        (13)

Where ijx  is the landuse allocated to small area i with

respect to landuse j, and is a decision variable.

The proposed model is exactly an imbalance
transshipment model. Using suitability score as “prices”,
developable areas as “capacity” and landuse forecast as
“requirement”, the optimal landuse allocation problem can
be easily solved.

By contrast, the traditional methods in literature [1, 2,
5] solve this problem by allocating landuses to high-scored
areas for each class until all the forecasted landuses are
allocated. Study shows that the allocation scheme given by
this kind of allocation methods is equivalent to the initial
solution obtained by northwest corner rule in
transshipment model [9]. Obviously, transshipment model
gives more reasonable results.

Table 4 Transshipment model applied to optimal landuse
allocation stage
   Class
Site

IND COM INS RES DA

1 11r 12r 13r 14r 1a

2 21r 22r 23r 24r 2a

3 31r 32r 33r 34r 3a

4 41r 42r 43r 44r 4a

LF 1b 2b 3b 4b
Notes: IND industrial; COM commercial; INS institutional;
RES residential; DA developable areas; LF landuse
forecast by classes

3.5 Load forecasts for the example system

The proposed method has been applied to the example
system to predict the load distribution of future 13 years. In
order to do multi-stage distribution planning, the forecast is
done in three stages, i.e. year of 2000, 2005 and 2010.
Besides, the authors believe that this stage-by-stage
forecasting style is more suitable for spatial load
forecasting. The load distributions, as shown in Figure 5,
clearly demonstrate the load growth process, both spatially
and temporally.

  
Figure 5. Load distribution for year of 2000, 2005 and 2010



4. CONCLUSIONS

Spatial load forecasting is a fundamental part of

distribution system planning. Incorrect forecasts, either
wrong magnitudes or wrong locations, will make new
substations and right-of-ways acquired at wrong locations,

leading to much higher costs.
This paper presents a novel landuse based spatial load

forecasting method. Two major improvements have been
made for the landuse simulation process, which is the core
of spatial load forecasting. Fuzzy logic technology is
applied to address the suitability evaluation problem, and
transshipment model is used to produce an optimal
landuse allocation scheme. The proposed method has been
applied to a real distribution system in Beijing, and
reasonable results have been achieved.

This paper also have put forward a mathematical
formulation for spatial load forecasting, which will help
SLF researchers find other alternatives to deal with the
landuse simulation process. As described in section 2, the
key to solve the landuse simulation problem is to find two
mappings, which correspond to the suitability evaluation
and landuse allocation stage.
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