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INTRODUCTION

The planners of the distribution network development are
inevitably confronted with the problems regarding the
uncertainty of various circumstances affecting the
decisions, which are to be made. A useful tool in such an
analysis offers the fuzzy mathematics [1,2,3] if properly
applied and interpreted. This paper outlines a fuzzy
mathematics based method for assessing the technical
limits of distribution networks throughout a long-term
period making it possible to predict the weak points and
plan the remedy actions.

APPLICATION OF FUZZY MODELING

Motivation

In distribution network planning there are many variables and
parameters, which can not be predicted with certainty. This is
particularly the case with the consumers load growth and
various data being of importance for the reliability and
associated load supply interruption costs evaluation. Fuzzy
mathematics provides an adequate means for encompassing
the said uncertainties and for drawing the necessary
engineering conclusions with regard to the actions which
have to be undertaken.

An engineering interpretation

Consider a variety q (variable, parameter) which values are
not known with certainty. This variety may be modeled as a
normalized unimodal fuzzy number (FN) as depicted in
Fig.1. FN models of guessed quantities are further on denoted
by capital letters.

Parameter α ∈ (0,1] (α- cut) is introduced which may be
interpreted as the level of uncertainty of the guess made at q.
Each α yields an interval of guessed values of q with lower
bound Qαl and upper bound Qαu. For increasing α these
bounds become closer to one another tending to a single
value as α approaches to 1. This value is the kernel of Q,
denoted as QK. If q is modeled by a triangular FN, then this
FN is completely defined by the triple (Qol, QK, Q0u).

The relative weighted uncertainty in q may be determined as,
for QK>0,
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The benefits offered by the application of the fuzzy
mathematics are the following:
• The result obtained includes the conventional crisp result as

this coincides with the kernel QK.
• The information on the possible values of the output variety

of interest due to the uncertainty of some input varieties is
obtained. This information is substantially more
comprehensive than that obtainable by conventional
sensitivity analysis. The latter considers possible deviations
of inputs taken one by one and only in close proximity to a
fixed system operating state. The intervals of possible
values managed by the FN approach may be of any size and
all uncertain inputs are simultaneously considered.

• The output obtained can be assessed with regard to the
grade of the uncertainty by applying (1). If this grade is
considered to be too high, the uncertain inputs should be
reexamined for a more precise quantification.
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Fig.1 Characteristic function of a FN

Calculation flow

Presume that q is a function F( ) of inputs qi, i=1,...,n. If
inputs are modeled as FNs to encompass their uncertainty,
then q is also a FN which may be formally expressed as

)( Q,...,QF = Q n1 (2)



To define Q, its characteristic function µQ has to be
constructed. This is done by generating a series of α values
from the whole interval (0,1). For each α the lower and upper
bounds of Q should be determined as
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which defines µQ.

The calculation of Qαl and Qαu is trivial if F( ) is a monotonic
increasing or decreasing function with regard to all arguments
being within the intervals in (4). In the first case, Qαl is
obtained from F( ) for qi=Qiαl, and Qαu for qi=Qiαu, i=1,...,n. 
In the latter case, qi=Qiαu should be inserted to obtain Qαl, and
qi=Qiαl to obtain Qαl.

NETWORK MODEL

Consider a radial feeder of a MV distribution network
(Fig.2). Each load point, consumer loads and the branch
supplying the load point are marked by the same index. It is
supposed that there is no back up facility in the initial
network state. The capability of the network to preserve the
quality of supply throughout a 10 year planning period is to
be examined. The possibility of violating thermal and voltage
drop limits as well as the acceptable supply interruption costs
is considered allowing for uncertainties in load prediction and
reliability associated data.

Consumer loads

Both real and imaginary parts of all load currents peaks are
presumed to be fuzzy and rising in time by obeying the
polynomial law
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Indices R and I in (5) denote the real and imaginary parts, t0i

is the initial year of supplying consumer i while R is the
annual increment rate, which is also modeled as a FN. For
brevity, arguments t will be omitted further on.

Average yearly real power demand of consumers is taken to
be

][][ J B U 3 = P Rr (6)

with [P] and [JR] being n by 1 column vectors of consumers
average real power demands and load current peaks real
parts. B is the load factor represented as a FN and Ur is the
network rated voltage.

Fig.2 Network sample under consideration

Maximum branch currents and voltage drops

Real and imaginary parts of maximum branch currents are
correlated as [4]

]][[][]][[][ Jm = I    ,Jm = I IIRR (7)

where [IR] and [II] are n by 1 column vectors of real and
imaginary parts of branch currents. The elements of the n by
n incidence matrix [m] are
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From (7), it follows that the maximum branch currents also
are fuzzy quantities. The rms of the current in branch k equals
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where [mk] is a 1 by n row vector built of the row k elements
of [m].



Denote by [l] the diagonal n by n matrix of the lengths of
feeder branches. Then the voltage drops at load points are

][][][ Jz  l = U z∆ (10)

where
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It is presumed that the feeder branches have the same
impedance per unit length z=r+jx. From (10), it is clear that
the elements of the n by 1 column vector [∆U] are fuzzy
quantities as they depend on [J].

Bearing in mind (10) the following expressions hold
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The rms values of voltage drops at feeder load points are
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with ∆URk and ∆UIk being elements of vectors [∆UR] and
[∆UI], respectively.

Supply interruption costs

If there is no back feed available, each failure of a branch,
say k, interrupts the supply to all branches and associated
loads fed by this branch until its repair is terminated. The
sound feeder portion is separated from the faulted one by
opening the disconnectors, if available, or by removing the
phase conductors ties at the corresponding tower. However,
each feeder failure causes a temporary complete supply
interruption needed for fault tracking and separation of feeder
portions. Bearing the aforementioned in mind, the expected
cost due to the energy not delivered equals
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The failure transition rate per unit line length Λ has been
modeled as a FN as well as the repair duration D and the fault
tracking and localization time D’. Symbol l is the total line
length and cw is the cost per unit of energy not delivered.

The annual cost caused by load interruption is
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where cp is the cost per interrupted unit of load.

The total supply interruption cost in year t referred to the first
year is
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with p denoting the discount rate.

Network capability evaluation

Network capability in providing service quality in uncertain
environment is assessed using the characteristic function
calculated for the relevant varieties. Consider Fig.3
displaying the characteristic function of a performance index
g with FN G. The maximum acceptable value of g is gmax.
The grade of satisfying the required condition g ≤ gmax , say
network grade of goodness concerning g, is assessed as
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with al and ar being the areas under the characteristic function
left and right to the value gmax.

Fig.3 Assessment of the grade of goodness

The overall assessment of the grade of nonviolating the limit
for the network as a whole may be of the form
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Index k runs over all corresponding network elements . Areas
alk and ark are determinable from the characteristic functions
of the FN Gk calculated for element k. In our case, the grade
of goodness for branch currents is calculated with regard to
their thermal limits as well as the corresponding grade for
voltage drops, both for the most critical element and for the
network as a whole.

APPLICATION EXAMPLE

The proposed method was applied to the feeder depicted in
Fig.2. Tables 1 to 3 quote the adopted system data. It was
presumed that all load points are present at the beginning of
the first year. The exception are loads at nodes #4 and #6
which are presumed to be connected to the feeder at the
beginning of the third and sixth year, respectively. The
maximum tolerable supply interruption cost is taken to be
equal to the cost of providing a feedback supply.



Table 1 Maximum load current in the first year of supply

Branch, k Jk0l, A JkK , A Jk0u, A

17, 19-21, 24, 26-27,

29, 40, 42, 43 0.90+j0.43 1.17+j0.57 1.71+j0.83

6 0 0 1.80+j0.87

18,  28,  30,  35,  36 1, 71+j0.83 2.34+j1.13 3.5+j1.70

4, 12, 31-32, 34,

37-39, 41 2.79+j1.35 3.69+j1.79 5.58+j2.70

10 4.32+j2.09 5.85+j2.83 8.73+j4.23

Table 2 Branch lengths
k lk, m k lk, m k lk, m k lk, m k lk, m
1 3080 10 450 19 410 28 430 37 700
2 1300 11 1020 20 1350 29 550 38 300
3 560 12 1820 21 650 30 330 39 50
4 460 13 600 22 150 31 630 40 600
5 350 14 1340 23 1030 32 1070 41 150
6 1200 15 540 24 1120 33 830 42 40
7 480 16 1500 25 900 34 50 43 240
8 360 17 840 26 750 35 330
9 350 18 1260 27 180 36 280

Table 3 Other sample data
R B Λ, fl/(km, yr)

(0.0, 0.05, 0.08) (0.2; 0.3; 0.4) (0.07, 0.10, 0.13)
Ur (V) cp, DEM/kW cw, DEM/kWh
10000 3 3,7
Imax, A ∆Umax, V cmax, DEM

170 1000 50000
r, Ω/km x, Ω/km p

0.6 0.36 0.05
D, h D’, h

(4, 6, 8) (1, 1.5, 3)

Fig.4 depicts the grades of goodness with respect to the
thermal rating of the critical branch (ei) and of the feeder as a
whole (eNi) as well as with regard to the acceptable supply
interruption costs (ec).

Fig.5 displays the feeder grade of goodness with regard to the
maximum voltage drop of most critical load point (eu) and
such overall grade for the feeder (eNu).

As may be seen, the network is most critical regarding the
voltage conditions. If we take 0.9 to be an acceptably high
grade of goodness, the voltage drop at the critical load point
is evaluated to be unsatisfactory at the end of the third year
and the overall voltage conditions at the end of the fifth year.
As to the thermal limits and the supply interruption costs, the
feeder may be considered to be adequate throughout almost
the entire 10 year planning period.

Fig.4 Grade of goodness with respect to thermal rating and interruption
costs during the planning period

Fig.5 Grade of goodness with respect to voltage drops during the planning
period
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