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ABSTRACT 
This paper presents a new approach to the reactive power 
compensation in distribution systems using an enhanced 
version of the Particle Swarm Optimization algorithm. 
Second order correction terms are used to compute the 
velocity of each particle during the search process. The new 
approach has better convergence properties. 

INTRODUCTION 
One of the major concerns of a power distribution company 
(DISCO) is to reduce technical and non-technical losses, 
while ensuring that the demand is satisfied at any moment at 
a reliable level of system performance and with the lowest 
possible cost. At present, due to the continuous growth of 
load demands, the distribution systems operate closer to 
their limits. At the same time the liberalization of electricity 
markets drives them to decision making based more and 
more on electricity prices.  
Both aspects are influenced in a great extant by the value of 
technical losses in distribution networks. Some of the most 
efficient methods applied to reduce losses in distribution 
systems are: (a) balancing loads between the phases of the 
3-phase system in the low voltage networks; (b) 
reconfiguring the distribution network in normal and post-
outage conditions by changing its radial structure, and (c) 
controlling the reactive power to obtain desired voltage 
profiles and to change reactive power flow through the 
system. 
Reactive power control at the system level can be achieved 
using several approaches such as generator voltage control, 
transformer tap control and fixed or controllable VAR 
sources. At the distribution level, the most efficient 
approach, as it produces other positive effects too, is the 
Reactive Power Compensation (RPC) method through 
power factor correction.  
Current and power flows in distribution systems reduce 
through RPC. For instance, a reasonable 10% reduction in 
the current flow produces a 19% reduction in branch losses. 
Therefore, the RPC approach might be an important source 
for loss reduction and financial savings for any DISCO. In 
addition the RPC approach based on capacitor banks 
determines reduced voltage drops in the system and 
decreases voltage fluctuations. 
This paper considers the RPC problem as finding an 
appropriate placement of reactive power sources (capacitor 
banks) to minimize system losses, while ensuring 
predefined voltage profiles in the buses of the distribution 
system. Inequality constraints are also considered to 
account for minimum and maximum voltage levels or the 
maximum allowable power supplied by reactive sources. 

Traditional techniques use linear or/and non-linear 
programming or gradient descent optimization methods. 
The last two decades have shown an impressive 
development of new methods and algorithms based on 
stochastic methods and computational intelligence. These 
approaches have widely used simulated annealing, genetic 
programming or genetic algorithms [3,6]. Recently new 
computational intelligence approaches, based on immune 
algorithms [5] and particle swarm optimization techniques 
[2], were proposed. All these techniques aim to solve 
complex optimization problems by applying models and 
mechanisms inspired from natural selection, immune 
systems or swarm behavior. 
This paper presents a comparative study for the RPC 
problem using three optimization methods based on 
computational intelligence techniques, namely genetic 
algorithms (AGs), immune algorithms (IAs) and particle 
swarm optimization (PSO) algorithms. A new searching 
strategy is also proposed to enhance the convergence 
properties of the standard PSO (S-PSO) algorithm.  

PROBLEM FORMULATION 
The RPC problem through optimal placement of reactive 
sources aims to identify an optimal solution for the 
placement of a stock of capacitors in the nodes of a 
distribution system with a known configuration that 
minimize an objective function. The unknown variables are 
locations, type and ratings of capacitors. This problem is 
one of the most complex optimization problems in 
distribution systems as it acts on an essentially non-linear 
objective function (power losses or combination of power 
losses and other functions for multiple criteria optimization) 
and must comply with non-linear inequality constraints. 
The objective function addresses three optimization criteria: 
(i) minimizing system energy losses during a given period 
of time; (ii) minimizing voltage deviations with respect to 
the system rated voltage and (iii) minimizing the number of 
shunt capacitors installed in the system. 
On the other hand, three types of constraints must be 
controlled: (i) keeping the system voltage between 
minimum and maximum values; (ii) excess reactive power 
compensation in the nodes of the distribution  system is 
forbidden and (iii) number of capacitors installed in the 
system is limited by an existing stock. 
The optimization criteria and the constraints are included in 
a unique objective function: 

CCUUUUWWobj PPFFF ⋅+⋅+⋅+⋅= ββαα        (1) 
where: Fobj – the global optimization function of the 
problem; FW – partial objective function for the system 
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energy losses; FU – partial objective function for the 
absolute voltage deviations with respect to the rated 
voltage; PU –penalty function for minimum and maximum 
voltage constraints; PC – penalty function for compensation 
constraints; αW, αU, βU, βC – weighting coefficients. Partial 
objective functions and penalty functions are expressed in 
specific percentage values referenced to the number of 
nodes in the system N and the time, in hours H. 
The voltage penalty function PU has two components: 

maxmin
UUU PPP +=          (2) 

associated to the minimum and maximum voltage 
constraints. The compensation strategy penalty function PC 
has also two components: 

maxmax N
C

Q
CC PPP +=          (3) 

where: PC
Qmax is the penalty function for the excess 

compensation of reactive power, and PC
Nmax is the penalty 

function that covers both minimization of number of shunt 
capacitors installed in the system and the upper limit 
constraint of this value. 
The terms from eqs. (1), (2) and (3) are computed as: 
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where: Pi,h , Qi,h – active and reactive power load in node i 
at hour h; dWh – system energy losses at hour h; Ui,h – 
voltage magnitude in node i at hour h; Unom – system rated 
voltage; Unin , Unax – minimum and maximum admissible 
voltages; QKi – reactive power of shunt capacitors from 
node i; NKi – number of shunt capacitors from nod i; NCB – 
total number of available capacitor banks. Also, the notation 
<X,0> stands for X if X is positive and 0 otherwise. 
Active and reactive powers in the system nodes are 
modelled using typical load profiles (TLPs) associated to 
known consumer categories from the system [4]. For 
instance, for a generic node i whose category is described 
by an active TLP denoted PP

*
I,h [%] (h=1,…,24), expressed 

in percentage from the daily energy consumption, the real 
load profile was computed using as reference the energy 
consumption over a given time  - ND days – denoted W : tot

ND
WPP tothi

hi ⋅=
100

[%],
*

,
  (10) 

OPTIMIZATION MODELS 
This paper approaches the RPC problem using three 
optimization models based on computational intelligence 
techniques. All these techniques have in common the fact 
that they can be applied to problems whose solutions can be 
represented as a point in an n-dimensional search space. 
Details about these models are presented bellow. 

Genetic Algorithms  
Genetic algorithms (GAs) are stochastic search strategies 
inspired from natural selection an evolution [1]. GAs 
represent admissible solutions as chromosomes, which 
encode the solution using genes and their values. A GA acts 
over a population of chromosomes using genetic operators 
such as selection, crossover or mutation. Parent 
chromosomes are selected to support crossover operations 
based on the values of their fitness functions and special 
mechanisms, such as the roulette rule algorithm [1]. 
Crossovers and mutations are a source of evolution induced 
by changing the structure of offspring chromosomes. The 
basic scheme of the GA is described in Box 1. 
 
Box 1 – The genetic algorithm. 

 

1. Initialize current population Pop={Xi ={xij}, i=1…NP, 
j=1…NG}, NP – number of chromosomes; NG-number of 
genes in a chromosome. 

2. Compute fitness functions for the chromosomes in the 
current population FFi, i=1…NP. 

3. Select parent chromosomes based on fitness values and the 
roulette rule. Parents={X*i , i=1…NX}, where NX  - number 
of parent chromosomes. 

4. Crossover: use parent chromosomes X*i  and X*j and a 
random number r. If r ≤ rc apply crossover of parents X*i 
and X*j to generate offsprings Oi and Oj. If r > rc parents are 
copied to the next generation (Oi X*i  and Oj X*j). 

5. Mutation: generate a random number r. If r ≤ rm select a 
gene from the offspring chromosome and apply mutation. 
Elsewhere, the offspring chromosome remains unchanged.

6. Next generation: go to step 2 until a maximum number of 
generations is reached. 

Immune Algorithm 
Immune algorithms (IAs) are biologically inspired 
techniques designed to mimic the ability of natural 
organisms to protect themselves against biological 
aggressors and to adapt to the environment [5]. Artificial 
immune systems are based on the concepts of antigens and 
antibodies. An antigen models the optimization problem 
itself, while an antibody describes a possible solution. 
Therefore, an antibody (or solution) recognizes (or resolves) 
an antigen (or problem). The degree in which an antibody 
fits an antigen is called affinity. Better antibodies, which 
better recognize antigens, have higher affinities. Moreover, 
for faster and better antigen recognition, a higher diversified 
antibody population is recommended. Hence, antibodies 
with higher dissimilarities between one another are 
preferred. The principles of the IA are described in Box. 2.
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Box 2 – The immune algorithm. 

 
 

Box 3 – The evolutionary S-PSO algorithm. 

 
 

1. Initialize current population Pop={ Xi ={xij}, i=1…NA, 
j=1…NS}; NA – number of antibodies; NS-space dimension. 

2. Compute affinity functions for antibodies AFFi, i=1…NA. 
3. Generate the proliferation pool.  
4. Apply crossover and mutation operators to antibodies from the 

proliferation pool based on affinities AFFi and crossover or 
mutation rates (see steps 3- 5 from the GA in Box 1). 

5. Compute affinity functions between antibodies and the antigen 
and the dissimilarity degrees between antibodies. 

6. Select antibodies from the proliferation pool to generate the 
new population, based on affinities and dissimilarities.  

7. Next generation: go to step 3 until a maximum number of 
generations is reached. 

1. Initialize current population Pop={ Xi ={xij}, i=1…NA, 
j=1…NS}; NA – number of particle; NS-space dimension. 

2. Compute objective functions for each particle FFi, i=1…NP. 
3. Generate the proliferation pool. r clones are generated for each 

particle.  
4. Select particles for mutation and crossover operations (the 

roulette rule may be applied). 
5. Mutations are induced to c0, c1 and c2 parameters. 
6. Apply crossovers by altering the velocity of each particle 

according to eq. (12). 
7. Compute the new position of each particle using eq. (11). 
8. Next generation: go to step 2 until a maximum number of 

generations is reached. 

Particle Swarm Optimization 
Swarm intelligence describes mechanisms inspired by 
nature, where groups of individuals reach some objectives 
through cooperation. S-PSO was developed as a simulation 
technique of simple social systems [2]. Strictly speaking, S-
PSO is a search strategy that combines local and global 
search to reach an optimal or near-optimal solution. The S-
PSO strategy uses a population of particles or potential 
solutions of the problem, which change their position, 
according to their own experience and the experience of 
other particle in the swarm, using a velocity vi

t+1: 
11 ++ += t

i
t
i

t
i vXX          (11) 

Velocity vi
t+1 is computed as a linear combination of its 

initial value vi
t and other two randomly weighted 

acceleration factors: the tendency to return to its best 
position so far BBi

L (local optimization), and the tendency to 
move towards the best position of the rest of particles in the 
swarm B  (global optimization): G
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where : c0, c1 and c2 –weighting factors, and r1 and r2 – 
random variables in the interval [0,1]. The basic scheme of 
the evolutionary S-PSO algorithm is described in Box 3. 

Enhanced PSO Model 
Previous researches [7] proposed a different version of the 
S-PSO algorithm, where a particle uses information about 
all its neighbours and not just the best one. Our researches 
considered an enhanced PSO model (E-PSO), where a 
particle changes its position based not only on the best 
position so far, but also on other successful positions of 
itself and other particles in the current population.  
Considering more or less past near-best positions might 
influence in a great extant the behaviour of the E-PSO. 
Adding too high order terms in eq. (12) could transform the 
guided search from the S-PSO into a random one. In fact, 
our studies proved that a second order E-PSO model is 
enough to guarantee a faster convergence. As a rule, higher 
order models are slower. The second order model computes 
the velocity for the next step using the first and the second 
best positions at both local and global optimization levels, 
denoted by BL

i,I and BL
i,II: 
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Figure 1 – Typical load profiles used to model system loads 
for the reactive power compensation problem. 
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where r1,k and r2,k (k=I,II) are random values in [0,1]. 

SIMULATION RESULTS 
The efficiency of the proposed E-PSO algorithm, was tested 
for the problem of RPC applied to a test system, which 
supplies a residential area in a big city in Romania. The test 
system has 36 nodes and 39 load sections on 8 feeders. The 
peak active system load was 11.966 MW, distributed among 
34 MV/LV substations with rated capacities between 250 
and 630 kVA and leading power factors between 0.80 and 
0.90, which was equivalent to a peak reactive system load 
of  6.265 MVAr. System loads were modeled using TLPs 
for four mixed consumer types: Type 1 - Block of 
apartments (10 floors) + Services; Type 2 - Houses + 
Services; Type 3 – Services; Type 4 - Block of apartments + 
Houses (see Fig. 1). Reactive power compensation uses 
capacitor banks with rated capacity of 5 kVAr. 
The simulations were driven for a period of 24 hours, 
during a week-day, using the algorithmic approaches 
described in the previous section. All approaches have used 
a common initial population of chromosomes, antibodies or 
particles, further on denoted as individuals. This population
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Table 1 – Values of objective function [%] for 3 algorithms.  
GA IA S-PSO 

2.6346 2.6202 2.6139 
Table 2 –  Values of the objective function [%] for Case I. 

Run # 1 2 3 4 5 
c1,I = c2,I 0.9 0.8 0.7 0.6 0.5 
c1,II = c2,II 0.1 0.2 0.3 0.4 0.5 

Fobj 2.6150 2.6137 2.6185 2.6262 2.6219
Table 3 –  Values of the objective function [%] for Case II. 

Run # 1 2 3 4 5 
c2,I 1 1 1 1 1 
c1,I 1 1 1 0.6 0 
c2,II 0.8 0.5 0.5 0.5 0.5 
c1,II 0.2 0.5 0 0 0 
Fobj 2.6152 2.6160 2.6135 2.6150 2.6338 
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Figure 2 – Evolution of the values of the objective function for 
the best individuals for the four searching procedures. 

 
comprises 10 individuals with 36 units each, the value of a 
unit being equal to the number of capacitor banks installed 
in the corresponding system node.  
The efficiency of the optimization algorithms was judged in 
terms of the values of the objective functions from eq. (1) 
and of the convergence properties. For comparison, Table 1 
shows the values obtained using GA, IA and S-PSO. 
The E-PSO algorithm was applied for different 
combinations of the weighting factors c1,I, c1,II and c2,I, c2,II 
from eq (13). Thus, two base cases were considered: Case I 
– equal weights for best local and global positions of the 
same order (c1,I = c2,I and  c1,II = c2,II) and Case II – different 
weights for each best local or global, and first or second 
order position. Objective function’s values for these 
combinations are shown in Tables 2 and 3. 
The values in Table 2 suggest that it is better to use higher 
values for the first order local or global weighting factors. 
However, since the second order positions hold some 
information about the optimum solution, completely 
neglecting them could lead to worse solutions. The best 
solution was found for weighting factors values of  80% for 
the first best position and 20% for the second best position. 
For the case where no correlation is supposed between the 
weighting factors (Case II and Table 3), the global optimum 
deviation (BG

II – Xt
t) from eq. (13) is the most influential 

second order term. Our experiments shown that the best 
results were obtained with higher values for the first order 
terms (c1,I and c2,I) and lower values for the second order 
terms (c1,II and c2,II). For instance, as is the case in Table 3, a 
possible combination is: c1,I = 1, c2,I = 1, c1,II = 0, c2,II = 0.5. 
The E-PSO algorithm behaves better not only in terms of 
the value of the objective function (see the bold values from 
Tables 1 – 3), but also and especially in terms of the 
convergence properties. In this context, a comparison of the 
convergence properties of the three search procedures (GA, 
IA and S-PSO) shown that the GA behaves the worst and 
the S-PSO algorithm – the best. Moreover, a comparison 
between S-PSO and E-PSO algorithms proved that the 
second one is faster. These findings are supported by the 
graphic representation from Fig. 2. 

CONCLUSIONS 
An enhanced particle swarm optimization (E-PSO) 
technique has been used to approach the problem of reactive 
power compensation in distribution systems. The 
optimization problem uses a multiobjective formulation 
based on mimization of energy losses and voltage 
deviations, subject to voltage and compensation restrictions. 
The E-PSO algorithm uses second order correction term for 
the particles’ velocities. The performance of the new 
approach was demonstrated using simulations on a 36 nodes 
radial test system.  
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