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ABSTRACT 

The expected replacement wave in the current power grid 

faces asset managers with challenging questions. Setting up 

a replacement strategy and planning calls for a forecast of 

the long term component reliability. 

For transformers the future failure probability can be 

predicted based on the ongoing physical degradation 

processes and the future loading scenarios as input. In 

previous work we have presented a modeling approach for 

individual transformers. 

We here present a probabilistic approach for predicting the 

reliability of a transformer population from the individual 

transformer reliabilities. 

This method has been successfully applied to a small 

transformer population by calculating the impact of 

different asset management scenarios. 

INTRODUCTION 

The ageing of power systems and their components are of 

great concern for the asset manager, especially in respect 

with the coming replacement wave in the electrical 

infrastructure [1, 2]. 

For supporting maintenance decisions, the asset manager 

can choose from several tools, e.g.:  

1. linking the historical reliability data to possible 

maintenance or replacement strategies [3, 4]; 

2. extrapolating the present condition to the future 

[5]; 

3. forecasting reliability by combining the 

degradation process with past or present condition 

or performance data and using a statistical 

approach [6, 7]. 

In view of the expected replacement wave, the asset 

manager is in need for a prediction tool, to determine the 

long term effects on the statistical relevant parameters of a 

population of power systems components. 

The present work is dedicated to the power transformer. In 

previous work we have presented a modeling approach for 

individual transformers [6]. In this paper we will describe a 

method for forecasting the population reliability from the 

individual reliabilities, partially based on [6, 8]. It also 

provides the basis for an asset management optimization 

tool for maintenance / replacement scenarios. 

INDIVIDUAL TRANSFORMER RELIABILITY 

FORECASTING 

In an earlier publication we have described a model for 

predicting the individual failure probabilities of a power 

transformer [6]. The model starts from a probabilistic 

approach, involves the use of the DP-value (Degree of 

Polymerization) as a quality parameter (an externally 

measurable indicator which is used to link model and 

reality) and involves an error propagation analysis which is 

used to take account of, and reduce, the inaccuracy of the 

predictions. 

The model uses the IEC loading guide, [9], to determine the 

hotspot temperature. The hotspot temperature T is then 

related to the estimated change of the DP-value with time, 

using, 
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Here R is the universal gas constant, Ea is the activation 

energy and A is a pre-exponential. An example result of (1) 

is depicted in Figure 11; starting from a relatively high 

initial DP-value, it drops down to a value below a critical 

DP-threshold. Both DP-value and threshold are known with 

a limited accuracy, indicated with curves for the (e.g. 95 %) 

accuracy margin. Initial uncertainties in model parameters 

lead to uncertainty in the expected lifetime. By using quality 

parameters as defined above, the knowledge of the actual 

situation can be updated. This translates in narrower 

uncertainty margins and more accurate predictions. 
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Figure 1. The DP-value and the DP-threshold with its 

accuracy bandwidths plotted versus time. 
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In [6] an error propagation analysis is performed which is 

used as input for the time dependent DP-value distribution 

function. 

The individual failure probability, Fi, is obtained from 
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with pdp(x,t) the distribution function of the DP-value at a 

time t and Pth(x) the cumulative probability of a failure for a 

DP-value x. The individual reliability function, Ri, is 

defined as 1-Fi. 

FROM INDIVIDUAL RELIABILITIES TO 

POPULATION RELIABILITY 

In this paper we present a method to transfer the individual 

reliability results to the corresponding reliability of a given 

population of transformers. The principle of this method is 

based on [8, Ch. 3]. The method assumes that the individual 

reliabilities, Ri, and failure probabilities, Fi, are 

uncorrelated. 

For a population of N transformers, the probability of 

having k failed transformers can be determined with, 
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The probability of having less than NF failures, PF(x< NF) is 

given by 
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From (4) the mean-time-to-failure (MTTF) corresponding to 

up to NF failures can be computed, as described in the 

appendix; 
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with t0 the starting time in the simulation and t=0 the present 

time. Equation (5) links the time and population failure 

probability. The population failure probability belonging to 

the MTTF(NF) is given by 

( ) .)(
N

N
NMTTFtF F

FP ==    (6) 

The population reliability, RP, is defined as 1-FP. 

APPLICATION TO PRACTICAL EXAMPLES  

Two examples are presented in this paper. The first example 

describes a population with two main age groups. In the 

second example the consequences of different replacement 

scenarios are provided. 

Two age groups 

The first demonstration is meant to illustrate the modeling 

method. A population of sixteen transformers is divided in 

two main age groups with equal individual transformers and 

similar load patterns and equal environmental conditions. 

The only difference between the two groups is the starting 

time of their operational life: eight of them were installed 50 

years ago and the other eight were put in operation 10 years 

ago. 

The population failure probability of the two combined 

groups is calculated with (6) and is depicted in Figure 2. 
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Figure 2. The failure probability for a population composed 

of two groups with a present age of 50 and 10 years. 

 

Although the MTTFi of individual failure in the first group 

is 16 years and 40 years later for the second group, there is 

already a significant failure probability after 4 year, as 

shown in Figure 2. This is the result of the combinatorial 

effects of the population; another result of this effect is that 

the time distance separating the populations does not show 

an intuitively expected “quiet” period of 40 years but a 

more gradual transition duration of less then 20 years. The 

two trend lines given in Figure 2 represent the equal failure 

rates within each group, in agreement with the assumptions 

(identical transformers, load patterns and environment). 

Replacement strategies 

In the second and more realistic example again two age 

groups are chosen, 30 and 10 years old, but now each group 

is divided in three classes having different loading during 

their operational lifetime. The resulting population failure 

probability is plotted with dashed lines in Figure 3, and is 

used as a reference for comparing scenarios involving the 

replacement of two or three transformers within the original 

population. 
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In the first scenario one old transformer is replaced in every 

load group (solid line in Figure 3). In this scenario, in 

comparison with the original one, it is observed that the 

lower probabilities are shifted 1 to 2 years to the future and 

the higher probabilities about 5 years to the future. Almost 

the same effect is obtained if in every age group one high 

loaded transformer is replaced (dotted line in Figure 3). 

The dashed-dotted line in Figure 3 represents the 

replacement of three old and heavy loaded transformers, 

providing us a 20 year postponement of worries. 
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Figure 3. The population failure probability for different 

scenarios: original 30 and 10 year old and 3 types of loading 

schemes. In the original group i) one of the older 

transformer is replaced in every load scheme, ii) from the 

original group 2 heavy loaded transformers, 30 and 10 year 

old, are replaced and iii) the 3 oldest and most heavy loaded 

are replaced. 

DISCUSSION AND CONCLUSION 

The results of the given examples are actually quite trivial, 

because of the very simple population and load distributions 

chosen. Here the benefit of the model is that the intuitively 

correct approach can now be supported with a realistic 

simulation. In real situations, where actual load patterns are 

included, a more complex initial age distribution exists and 

updated knowledge of diagnosed transformers is available, 

the effect of maintenance / replacement scenarios is much 

harder to predict beforehand. Here the proposed 

probabilistic modeling will enable asset managers to 

optimize their policy on maintenance and replacement. 

The present modeling should be developed further in order 

to enhance its capabilities. 

• Technical improvement: The evaluation of 

equation (3) is very time consuming for a 

population consisting of a large number of 

transformers. The processing time can be limited 

by clustering transformer into groups with similar 

failure behavior that may be treated as a single 

component. The division in sub groups could be 

performed automatically based on the parameters 

defining the probability distributions. 

• Degradation mechanisms: Up to now only paper 

degradation is included as the process limiting the 

transformer’s expected lifetime. In future other 

failure mechanisms should be included. This could 

involve the condition of bushings and tap 

changers.  

• Additional options: At present the model is 

employed to analyze the consequences of 

immediate actions. The asset manager also would 

like to evaluate the effect of future or postponed 

actions. In the ideal situation the asset manager 

may define a number of restrictions (for instance 

the rate at which transformers can be replaced 

economically or the delivery time), and the model 

generates the optimum strategy. 

To our opinion, the probabilistic modeling based on 

reliability data obtained from physical degradation 

mechanisms of individual transformers is a main step 

forward to have a working tool to support maintenance and 

replacement strategies. 
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APPENDIX 

The MTTF is the expected value of the time t weighted with 

the distribution function f(t) for NF or more failures. This 

function is equal to the time derivative of (1-PF(x<NF|t)), 

where PF(x<NF|t) is the cumulative probability that less than 

NF transformers have failed. 

Furthermore, we want to know the MTTF from a reference 

time t0 with respect to the present which is taken as t=0: 
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With integration by parts (A1) can be transformed in, 
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Equation (A2) is only valid if t0 is taken such that 

PF(x<NF|t0) is equal to one. 


