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ABSTRACT
In this paper a solution method for the harmonic analy-
sis of three-phase four-wire distribution networks is pre-
sented. In order to obtain a more accurate model of a
real distribution network a nonlinear transformer model
has been developed. The construction of the transformer
model and the implementation in a load flow program will
be discussed. The nonlinear loads in the network will be
simulated in the time domain. The total harmonic distor-
tion (THD) of the voltage in the distribution network will
be compared to the situation where the nonlinear loads are
replaced by constant harmonic current sources. This way,
the effects of attenuation and diversity on the voltage THD
will be explained. The effects of different system parame-
ters on the voltage THD will also be investigated.

INTRODUCTION
Because of the increasing presence of harmonic producing
equipment, harmonic load-flow simulations are an impor-
tant component of power system analysis and design [1–4].
It is well known that the harmonic currents drawn by the
loads are dependent of the supply voltage, except for cases
where the nonlinear loads are replaced with constant cur-
rent injections.
The model described in the paper uses the magnetic equiv-
alent circuit (MEC) of a transformer implemented in sym-
metrical components. This type of spatial discretisation
yields a good representation of the physical shape of the
transformer just like the FE method although it is not as
detailed as the finite element (FE) method and thus sig-
nificantly faster. The utilized model has the benefit that
the saturation of the yokes is considered as compared to
the representation of the nonlinear inductance (e.g. [5]).
The model presented here allows representing coupling be-
tween the phases and different saturation levels of every
phase can be taken into account.
For the time discretisation, the harmonic balance method
is used, this implies that a fast fourier transform (FFT) is
performed on the reluctance in the different parts of the
transformer. For the three-phase transformer this also im-
plies that the reluctance has both a time and a space har-
monic order. So the calculation method presented here
has been developed in the (frequency, spatial order) do-
main, analogously to the analysis of the magnetic fields
in squirrel-cage induction motors, presented in [6]. For
all quantities (current, voltage, flux, magnetic reluctivity),
the temporal and spatial variation is resolved into compo-
nents characterised by frequency, order and complex value.
In the case of three-phase transformers the spatial orders
correspond to the symmetrical components. An advantage
of this method is a better understanding in the interaction
between different harmonics. Another advantage is that

less fast fourier transformations are needed as mentioned
in [7]. The harmonic balance method allows the user to
choose the number of harmonics that determine the satura-
tion state. This allows to obtain a good estimation of the
saturation state. The other harmonics are linearised around
this working point.
In this paper the case of a distribution network with two
feeders will be investigated. The influence of nonlinear
loads on this distribution network is verified by replacing
them by constant current sources. The nonlinear loads are
simulated in the time domain in every iteration. The effects
of attenuation and diversity on the voltage THD will be
explained. The effect of different system parameters on the
THD will be investigated. The influence of the transformer
model on the voltage THD will also be elaborated.

DISTRIBUTION NETWORK MODEL

Model Description of the Distribution Network
The model of the distribution network is a three phase net-
work implemented in symmetrical components. It consists
of a HV/MV transformer, connected to several MV/LV
transformers. The number of MV/LV transformers can be
varied. The MV/LV transformers supply different feeders,
for every transformer the number of feeders is free. The
length, type and consumed power of every feeder can also
be enforced by the user. The distribution model can con-
tain different nonlinear loads, that can be placed in specific
nodes.

Solution Method
The model is solved with a hybrid method. This implies
that a part of the network is implemented in the frequency
domain and the other part is simulated in the time domain.
The line elements and the linear loads are simulated in the
frequency domain, the nonlinear loads in the time domain
(e.g. by using Plecs R©, a Matlab R© toolbox). The output
data of this part (e.g. the currents) can be transformed to the
frequency domain by performing a fast fourier transform
(FFT) on the steady state current of the nonlinear load. For
all calculations the first 40 harmonics are considered.
The model is solved with the iterative forward-backward
method. This method consists of two steps, the back-
ward and the forward sweep respectively. In the backward
sweep, the voltage is calculated in every node, starting
from the source and taking into consideration the voltage
drop in every line section. In the first step, the voltage spec-
trum of the HV-bus, which is considered to be constant, is
used in every node. Then the harmonic current drawn by
every load is calculated. In the forward sweep, the har-
monic current through every branch is calculated. This it-
erative method continues until convergence is achieved.
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The use of an iterative method may lead to some conver-
gence problems. Sometimes the method becomes numer-
ically unstable. The reason for this instability is the pro-
portion of the load impedance to the impedance between
the considered node and the HV-bus. A possible solution
for this problem, without changing the physical properties
of the network, is inserting a reactance pair [8]. To solve
the network with the iterative method the voltage spectrum
in the fictitious node between each reactance pair is con-
sidered. So the impedance of the load, seen from these
fictitious nodes, is larger and the impedance between these
fictitious nodes and the HV-bus is smaller.

THE NONLINEAR TRANSFORMER MODEL
In this section a model for a three-phase, three-legged
transformer is analysed.
In the following equations, straight indices indicate a space
harmonic and slanted indices denote a time harmonic.

Electric and Magnetic Transformer Equations
In Fig. 1 the equivalent electric and magnetic circuit of a
three-phase three-legged transformer is shown. Here is as-
sumed that the direct and inverse component of the flux
closes through the yokes and that only the homopolar part
of the flux closes via the air, which results in Fig. 1 (b)
for the direct and inverse component and Fig. 1 (c) for the
homopolar component.
The electrical equations derived from Fig. 1(a) are

Upn = RpIpn + Lpσ
dIpn

dt
+ Np

dΦn

dt

U
′

sn = R
′

sI
′

sn + L
′

sσ

dI
′

sn

dt
+ Np

dΦn

dt
(n = a,b, c)

(1)

with

• Ipn, I
′

sn, Upn, U
′

sn: the currents and the voltages of the
primary and the secondary windings referred to the
primary side

• Φn: the core magnetic flux

• Rp, R
′

s, Lpσ, L
′

sσ: the winding resistances and the
constant leakage inductances referred to the primary
side

• Np, Ns: the number of turns

The relations between the magnetic flux and the currents
obtained from this circuit are
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(Rn + 3Rd)Φn

(2)
where Rn is the nonlinear reluctance of leg n, Rab and
Rbc are the nonlinear reluctances of the yoke between two
legs and 3Rd is the constant reluctance of the air branch.
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Figure 1: Equivalent electric (a) and magnetic circuits of
a three-phase three-legged transformer, for the direct and
inverse component (b) and for the homopolar component
(c).

Equations (1) and (2) can be transformed into symmetri-
cal components, which gives the next equations in the fre-
quency domain (with k the harmonic order) for the electri-
cal part.

¯
Upnk =

¯̄
Zpnk¯

Ipnk + jωkNp¯
Φnk

¯
U

′

snk =
¯̄
Z

′

snk¯
I

′

snk + jωkNp¯
Φnk (n = 0, 1, 2)

(3)

In these equations the double underlined symbols are ten-
sors, which correspond to 2 × 2 matrices. The single un-
derlined symbols are complex values but they are applied
as 2× 1 column matrices.
For the magnetic part, the equations would be uncoupled
if the reluctances of the yokes would not be taken into ac-
count. The multiplication of a reluctance, with space har-
monic order n and time harmonic order k, and a flux, with
space harmonic order m and time harmonic order l, leads
to a magneto motive force (mmf) with time harmonic order
h and space harmonic order κ. A first contribution is

h = k + l; κ = m + n + 3q
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and the second one is
h = k − l; κ = m− n + 3q

if k > l and else
h = l − k; κ = n−m + 3q

In the above equations, q has to be −1, 0 or 1 in order to
obtain a value for κ that equals 0, 1 or 2.
To obtain the influence of the yoke reluctances, equation
(2) has to be considered. By using some basic calculus this
equation can be rewritten as

0 = −Np(
¯
Ip0 +

¯
I

′

s0) + ( ¯̄
Ra +

¯̄
Rb +

¯̄
Rc

3
+ 3

¯̄
Rd)

¯
Φ0

+ ( ¯̄
Ra +

¯̄
Rb

¯̄
a2 +

¯̄
Rc

¯̄
a

3
)
¯
Φ1

+ ( ¯̄
Ra +

¯̄
Rb

¯̄
a +

¯̄
Rc

¯̄
a2

3
)
¯
Φ2

0 = −Np(
¯
Ip1 +

¯
I

′

s1) + ( ¯̄
Ra +

¯̄
a
¯̄
Rb +

¯̄
a2

¯̄
Rc

3
)
¯
Φ0

+ ( ¯̄
Ra +

¯̄
a
¯̄
Rb

¯̄
a2 +

¯̄
a2

¯̄
Rc

¯̄
a

3
+ ¯̄
Rab +

¯̄
a2

¯̄
Rbc

¯̄
a

3
)
¯
Φ1

+ ( ¯̄
Ra +

¯̄
a
¯̄
Rb

¯̄
a +

¯̄
a2

¯̄
Rc

¯̄
a2

3
+ ¯̄
Rab +

¯̄
a2

¯̄
Rbc

¯̄
a2

3
)
¯
Φ2

0 = −Np(
¯
Ip2 +

¯
I

′

s2) + ( ¯̄
Ra +

¯̄
a2

¯̄
Rb +

¯̄
a
¯̄
Rc

3
)
¯
Φ0

+ ( ¯̄
Ra +

¯̄
a2

¯̄
Rb

¯̄
a2 +

¯̄
a
¯̄
Rc

¯̄
a

3
+ ¯̄
Rab +

¯̄
a
¯̄
Rbc

¯̄
a

3
)
¯
Φ1

+ ( ¯̄
Ra +

¯̄
a2

¯̄
Rb

¯̄
a +

¯̄
a
¯̄
Rc

¯̄
a2

3
+ ¯̄
Rab +

¯̄
a
¯̄
Rbc

¯̄
a2

3
)
¯
Φ2

where
¯̄
a yields a phase angle rotation of 120◦.

Depending on the time harmonic order of the reluctance
and the flux, these equations can be rewritten in symmetri-
cal components of the reluctances

¯̄
Ra,

¯̄
Rb and

¯̄
Rc.

This equation and (3) are nonlinear equations of the form
G(x) = S(x)x− b = 0 (4)

The components of the state vector x are the harmonic cur-
rents,

¯
Ipk and

¯
I

′

sk, and the flux
¯
Φk. The vector b consists

of the voltages,
¯
Upk and

¯
U

′

sk, and the magnetic potential.
Equation (4) will be solved in two steps. In the first step
only the first six odd harmonics are considered to deter-
mine the global saturation state (k = 1, 3, 5, 7, 9, 11). In
this step the Newton-Raphson method is used, which con-
sists of the iterative application of the algorithm:

xm+1 = xm −DG(xm)−1G(xm) (5)
The iterative process continues until convergence is
reached. The calculation of the Jacobian DG(x) is ob-
tained numerically as DG(x) = S + (∂S/∂x) · x due
to the particular form of the nonlinear equation G(x) =
S(x)x− b = 0.
In the second step, the first forty harmonics are considered
(k = 1, ..., 40). The model is linearised by using the differ-
ential reluctances and the magnetic current is determined
by solving the following equation:

x = P−1b (6)
The matrix P is obtained in the same way as S. But the

reluctance components are replaced by the differential re-
luctances for the cases where the flux harmonic order does
not equal one of the first six odd harmonics.

CASE STUDY
In this case study the network depicted in Fig. 2 will be
elaborated on. The network consists of two feeders with
10 nodes each where equally distributed loads consume
30kVA in total with a power factor of 0.8. Different simu-
lations will be performed on this network in order to inves-
tigate the attenuation and the diversity effect. Therefore,
four peak rectifiers are placed on the network and each of
the rectifiers supplies a load that absorbs 10kVA.

11

1 2 3 9 10

12 13 19 20

HV/MV

MV/LV

MV/LV

HV
bus

Figure 2: Topology of the considered distribution network.

Attenuation Effect
When nonlinear loads are replaced by a fixed harmonic
current source, there will be an error on the voltage THD
when compared to the simulation where the currents are
dependent on the node voltage.
For this simulation, four single phase peak rectifiers are
connected to feeder 1 in node 2, 4, 6 and 8 of phase a. The
difference in the voltage THD in every node can be found
in Fig. 3. When comparing the first bar with the second
bar, one can see that the voltage THD is lower when the
current drawn by the nonlinear load is dependent on the
node voltage. This can be explained by considering the
attenuation factor:

AFh =
IN
h

NIh
(7)

with

• IN
h : Resultant current for harmonic h for N units.

node
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D
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)
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Figure 3: The voltage THD in the nodes 1 to 10 of phase
a. The first bars (black ones) represent the case where the
nonlinear load is a fixed harmonic current source. The sec-
ond bars where the load current is dependent on the node
voltage. The two last bars are the same as the first ones
but here the magnetizing current has not been considered
during the simulation
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• Ih: Current of harmonic h when the nonlinear load is
replaced by a fixed harmonic current source.

This factor is given for every odd harmonic in Fig. 4. The
factor is generally spoken lower than one which explains
the smaller voltage THD for the second bar.
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Figure 4: The attenuation factor of the harmonic currents.

The same simulation has been performed without consid-
ering the influence of the magnetizing current in every iter-
ation. The results are added in Fig. 3. The conclusion that
can be drawn is that the voltage THD is slightly higher if
the magnetizing currents are considered.

Diversity Effect
The diversity effect describes possible harmonic cancel-
lation between nonlinear loads. A possible origin can be
found in the variation of the line impedance magnitude or
the different X/R ratios of the line impedance. To demon-
strate this effect a simulation has been performed in which
feeder 1 of the distribution network of Fig. 2 is imple-
mented as a line and feeder 2 has the physical properties
of a cable. In this case the two feeders have a different
X/R ratio. The four nonlinear nodes are placed on phase
a in the nodes 4, 8, 14 and 18. The influence of the line
impedance magnitude can be considered when comparing
the harmonic cancellation of the rectifiers in node 4 and 14
with the harmonic cancellation of those in 8 and 18.
In order to quantify the effect of the phase angle dispersion,
the following current harmonics diversity factor has been
defined:

DFh =

∣∣∣∣∣
∑N

i=1 Ii
h∑N

i=1

∣∣Ii
h

∣∣
∣∣∣∣∣ (8)

where:

• N is the considered amount of nonlinear nodes.
• II

h =
∣∣Ii

h

∣∣ ∠θi
h is the harmonic current of order h in-

jected by the i-th load of the N considered loads.

In Fig. 5 the diversity factor of the nonlinear loads in 4 and
14 is plotted in the first bar and in the second bar the diver-
sity factor of the rectifiers in node 8 and 18 is displayed.
The diversity factor ranges between 0 and 1. A small
value implies a significant amount of cancellation due
to the circulation of harmonic currents among individual
loads. From Fig. 5 one can also deduce that a higher line
impedance magnitude results in smaller diversity factors.

CONCLUSION
In this paper the construction of a simulation model for re-
alistic distribution networks has been set up. This model

has been used for case studies in which the nonlinear loads
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Figure 5: The diversity factor of the rectifiers in node 4 and
14 (black) and of the rectifiers in node 8 and 18 (grey).

can be presented by fixed current sources or by voltage
dependent harmonic current sources. Due to the represen-
tation of the the nonlinear loads with fixed current sources
an overestimation of the voltage THD was obtained. The
reason for this overestimation has been explained with the
attenuation and the diversity effect.
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