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ABSTRACT 
Since new regulatory frameworks have been implemented, 
the distribution utilities have become more business 
oriented. Accordingly, they need to resolve and balance 
economic and reliability concerns by means of 
incorporating both reliability criteria and cost 
considerations in their decision-making process. In the 
past, the majority of utilities based their selection of a 
reliability criterion on experience and judgment of the 
planning engineers. Moreover, they did not explicitly 
incorporate customer cost consideration in their analysis. 
The determination of what is an acceptable level of 
reliability should recognize the perceived impacts seen by 
customers. These impacts can be considered in the form of 
Customer Outage Cost Model, which provides valuable 
information to balancing the economic and reliability 
aspects. Since the Customer Outage Cost Model used in the 
assessment of the reliability worth might directly influence 
on the decision-making process, this paper evaluates three 
different customer outage cost models. Namely, these are: 
Aggregated or Average Cost Model, Probabilistic Cost 
Model, and Fuzzy Cost Model. By means of numerical 
examples, the practical features of the three models are 
revealed. Finally, the result analysis and conclusions are 
presented. 

INTRODUCTION 
Since new regulatory frameworks have been implemented, 
the distribution utility (DU) has become more business 
oriented. Accordingly, it needs to resolve and balance 
economic and reliability concerns by means of 
incorporating both reliability criteria and cost considerations 
in their decision-making process. Before the changes in the 
regulatory laws took place, most of the DUs did not directly 
deal with the aspects related to the distribution system 
reliability.  
Even more, the DUs did not explicitly incorporate customer 
cost consideration in their analysis. Nowadays, an 
acceptable level of reliability is compared with arbitrary 
criteria which are only inadequate for neither validating the 
suggested capital investments, but also portraying the actual 
customer impacts as a result of system interruptions [2, 6, 
and 9]. Then, the determination of what is an acceptable 
level of reliability should recognize the perceived impacts 
seen by the customers.  
The monetary costs, which result from the evaluation of 
these impacts, have become a key indicator of the reliability 
worth [2, 6, and 9]. The reliability worth is assessed by 

means of the Customer Outage Cost (COC). The COC has 
been represented by different models, such as: Aggregated 
or Average Cost Model (AACM), Probabilistic Cost Model 
(PCM), and Fuzzy Cost Model (FCM). 
This paper attempts to evaluate the reliability worth 
applying these different cost models by means of numerical 
examples in order to reveal their practical characteristics 
and make comparison regarding the decision-making 
process. 
The content of this paper is structured as follows: a brief 
description of the reliability worth is given in the second 
section. In the third section, a broad description of the 
assessed customer cost model is presented. Next, the 
description of the distribution system data and the 
considered cases are showed. Subsequently, the obtained 
results are reported. Finally, the conclusions are exposed in 
the last section. 

RELIABILITY WORTH 
Broadly speaking, performing the reliability worth analysis 
requires an assessment of the cost of providing reliable 
service, Reliability Cost, and a quantification of the worth 
of having it, Reliability Worth [8]. 
In general, the direct assessment of the reliability worth has 
been recognized as a difficult task because of there are 
many intangibles aspects involved in the evaluation process, 
which are not always possible to quantify in monetary terms 
[4].  
A practical alternative, which is being utilized, is to 
evaluate the impacts and the customer monetary losses due 
to an outage by means of customer surveys [2, 6, and 9]. 
The customer survey are based on the assumption that 
customers are in the best position to understand how 
interruptions affect them [3, 8, and 9].  

CUSTOMER OUTAGE COST MODEL  
After analyzing the collected data by the surveys, it is 
possible to create functions or models of interruption cost 
depending on the interruption duration for any particular 
customer or sector of customers. This function is known as 
Customer Damage Function (CDF) and can be determined 
for a given customer type and aggregated to produce Sector 
Customer Damage Function (SCDF). The SCDF can be 
combined to create a Composite Customer Damage 
Function (CCDF) [2]. 
In this paper, SCDF and CCDF, i. e. the customer outage 
costs, have been implemented from three different 
approaches, which are aggregated or average, probabilistic, 
and fuzzy approach.  
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Aggregated or Average Cost Model (AACM) 
Customers are asked to provide their best estimates of 
monetary losses for selected outage scenarios [3, 8]. Thus, 
the survey provides data which can be conveniently used to 
create either CDFs or SCDFs for specific customer classes 
and sectors, or CCDF for a complete service area or 
distribution system (DisS). The AACM for a particular 
duration can be calculated in several forms such as: average 
cost per interruption, aggregated consumption-normalized 
cost, aggregated peak load-normalized cost, and average 
peak-normalized cost. The equation (1) shows the latter 
form, which is used in this paper. 
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Where AvPNC is average peak load-normalized cost, i is ith 
respondent, costi is cost estimated in monetary units of ith 
respondent, peakLoadi is annual peak load in kW of the ith 
respondent, and m is the number of respondents for which 
usable cost estimates and peak load values are available. 
Table 1 shows the obtained AACM. The AACM for the 
sector Ind-Res, which refers to the composite Industrial-
Residential customer sector in Table 1, is a direct result of 
the development of the corresponding CCDF.  
 

Table 1 – AACM for the Considered Sectors 
Interruption Duration (hrs) - Cost ($/kW) Sector 
0.33 1 4 8 

Industrial 16.4323 26.3094 63.0637 101.8375 
Residential 0.023 0.1428 1.8849 4.4545 

Ind-Res 10.4832 16.8229 40.8838 66.5320 

Probabilistic Cost Model (PCM) 
In order to develop a PCM, every customer response must 
be in one of the following forms: cost per interruption, 
consumption-normalized cost, or peak load-normalized cost. 
Particularly in this paper, the peak load-normalized cost 
form was used. 
 Briefly speaking, the principal idea that is applied to 
develop a PCM is to transform the entire cost data set from 
a surveyed specific duration into other data set, which is 
represented by a normal probability distribution using the 
normality transformation [4, 8]. Therefore, the inherent 
dispersion of the customer responses is handled in this way 
and incorporated within the COC model, and therefore the 
reliability worth assessment.  
The normality transformation equations are: 
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Where x is the original cost, λ is the normality power 
transformation exponent, and y is the transformed cost. To 
convert to the corresponding actual customer cost x, the 
inverse function of the equation (2) is applied.  
The normality transformation has two limitations which are 

as follows. It applies only to continuous variables, and it 
does not apply to zero-valued data. In accordance to [4, 8], 
to fulfill these constraints, zero-valued customer outage cost 
are extracted and treated separately. The remaining data are 
analyzed using an iterative procedure that determines the 
value of λ which best transform the data set into a normal 
probability distribution. The reference [8] describes 
comprehensively this procedure.  
The PCM for specific customer sector and outage duration 
is defined by four unique parameters: normality power 
transformation exponent λ, the proportion of zero-valued 
data Pz, the characteristic parameters of the normal 
probability distribution; mean µ, and variance σ2. Table 2 
shows the parameters that characterize the PCM for the 
industrial, residential sector [4].  
 

Table 2 – PCM Parameters for the Considered Customer Sectors 
Duration 

(Hrs) Sector λ µ σ2 Pz 

Industrial -0.6605 1.0487 2.7866 0.1513 

Residential -0.2207 -5.6618 4.8689 0.3295 0.33 

Ind-Res -0.2239 0.1027 2.0802 0.4011 

Industrial -0.0707 1.6327 2.3443 0.0613 

Residential -0.1828 -2.7329 2.8790 0.0973 1 

Ind-Res -0.0703 1.2478 2.2240 0.1476 

Industrial -0.0387 2.8272 2.3620 0.0047 

Residential -0.0105 0.2886 1.6551 0.0265 4 

Ind-Res -0.0483 2.4234 1.6900 0.0311 

Industrial -0.0020 3.6939 2.9880 0.0047 

Residential -0.0160 1.1345 1.5725 0.0426 8 

Ind-Res -0.0159 3.1742 1.7967 0.0470 

 
Moreover, Table 2 presents the PCM parameters of the Ind-
Res sector, which refers to the composite Industrial-
Residential sector. These parameters were originally 
obtained in this paper. As can be noted, cost data are not 
available for all possible outage durations since the number 
of interruption scenarios which can be used in a survey 
questionnaire is limited. In order to describe the interruption 
costs at non-surveyed outage durations, regression analysis 
is used to estimate the four parameters. Thus, these 
equations between the studied duration values and each of 
the four parameters are obtained using the least-square 
method. Therefore, a particular parameter at a non-surveyed 
duration can be predicted by substituting the outage 
duration value into the respective equation.  

Fuzzy Cost Model (FCM) 
Only the results based on mean values may not be a good 
representation for the reliability worth analysis in view of 
that the customer perception regarding the outage cost for a 
given scenario can differ considerably different from one 
another [3, 7, and 8]. To cope with this kind of uncertainty, 
the fuzzy arithmetic and logic can be suitably applied in 
order to develop a Fuzzy Cost Model [7]. The FCM 
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provides a fuzzy representation for the entire customer cost 
data at each one of the surveyed outage durations. 
Nevertheless, this fuzzy representation can be achieved in 
different ways. For instance, the shape of the fuzzy 
representation may be obtained by means a fuzzy inference 
system. In this paper, the customer cost data are represented 
by means of a trapezoidal fuzzy number which has been 
obtained applying a procedure similar to that in [7].  
Any trapezoidal fuzzy number can be represented by four 
parameters, a, b, c, and d, which correspond to its vertices. 
The selection of this fuzzy representation obeys the 
intention of achieving the reliability worth without applying 
the extension principle to compute the fuzzy arithmetic 
operations.  It is recognized that the extension principle is 
computationally demanding. For that reason, the function 
principle is an effective way of performing fuzzy arithmetic 
operations with lower computational burden [5, 10]. 
Subsequently, Table 3 presents the FCM in the form of 
trapezoid parameters for every considered customer sector, 
where µ(a) = µ(d) = 0 and µ(b) = µ(c) = 1. 
 

Table 3 – FCM for the Considered Customer Sectors 
Duration 

(Hrs) Sector a b c d 

Industrial 0 0.0379 0.1842 492.1 

Residential 0 0.00135 0.00311 0.0886 20/60 

Ind-Res 0 0.0286 0.1294 313.50 

Industrial 0 0.0189 0.0557 340.2 

Residential 0 0.00452 0.00672 0.3542 1 

Ind-Res 0 0.0428 0.0937 220.00 

Industrial 0 0.0519 0.0654 173.0 

Residential 0 0.01546 0.02221 2.1000 4 

Ind-Res 0 0.2055 0.6508 113.60 

Industrial 0 0.0206 0.0206 103.5 

Residential 0 0.08549 0.85490 3.0200 8 

Ind-Res 0 0.9260 0.9260 68.65 

DISTRIBUTION SYSTEM DATA 
The distribution system RBTS Bus 2 [1], shown in Figure 1, 
was employed to illustrate the application of the three 
aforementioned Customer Outage Models. This distribution 
system is composed of four radial feeders and twenty two 
load points. Moreover, it is assumed that the distribution 
system is balanced. The feeder type and length data are 
included in [1]. Meanwhile, the customer composition and 
loading data of the distribution system are shown in Table 4 
and Table 5 respectively. From Table 4 and Table 5, the 
applied load peak composition for the Feeder 4 is 63.7% 
and 36.3% of industrial and residential load respectively. 
Additionally, the reliability data assumed for the 11kV 
distribution system components is shown in Table 6, where 
λ, r, and st are average failure rate, average repair time, and 
average switching time respectively. 
 

 
Figure 1 - Distribution System – RBTS Bus 2 

 
Table 4 - Customer Composition for Every Load Point 

Load - MW Load 
Points Type 

Average Peak 
Number of 
Customers 

LP1 - LP7, 
LP10,LP11 Residential 0.535 0.8668 210 

LP12-LP19 Residential 0.450 0.7291 200 
LP8, LP20, 

LP21 Industrial 1.000 1.6279 1 

LP9, LP22 Industrial 1.150 1.8721 1 
 

Table 5 - Loading Data of the Distribution System 
Feeder Load 

 MW Feeder 
Number 

Load  
Points 

Average Peak 

Number of 
Customers 

F1 LP1 - LP7 3.745 6.068 1470 

F2 LP8 - LP9 2.150 3.500 2 

F3 LP10 - LP15 2.870 4.650 1220 

F4 LP16 - LP22 4.950 8.044 803 

Total - Distribution System 13.715 22.26
2 3495 

 
Table 6 - Reliability Data 

Component λ 
(f/yr.km) 

r 
(hrs) 

st 
(hrs) 

Transformer 11/0.45 kV 0.015 10 1 
Lines 0.065 5 1 

CONSIDERED CASES 
The three customer outage cost models were used to carry 
out the reliability worth assessment of the DisS shown in 
Figure 1. The results of such assessment are presented in 
form of feeder indexes such as Expected Outages Cost 
(ECOST) and Interrupted Energy Assessment Rate 
(IEAR).  The evaluated cases are as follows: 
Case 1: The only protection equipment present in the 
distribution system is the breaker at the beginning of each 
feeder. Every single failure anywhere in the feeder makes 
the corresponding breaker operate. Case 2: This case 
considers in addition to Case 1 installing fuses in every 
lateral branch. Therefore, twenty two fuses are installed in 
the DisS. Case 3: This case considers in addition to Case 1 
installing disconnect switches in selected locations in the 
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main sections of each feeder. Therefore, ten disconnect 
switches are installed in the DisS.  
As general assumptions, it has that the studies only consider 
the 11kV feeders and ignore any failure in the 33kV system. 
Furthermore, it assumes that all the 11kV protection 
equipments operate successfully when required. 

RESULT ANALYSIS  
In order to apply and compare the three COC models in the 
reliability worth assessment, the following general 
considerations were made. The PCM parameters for the 
industrial and residential sectors in Table 2 were employed 
to artificially construct the customer cost data set required 
to obtain the remaining COC models. This task was 
accomplished by means of Monte Carlo Simulations which 
were required to fulfill the following criteria: confidence 
level α = 10% and maximum convergence error MaxError = 
5%. The resulting AACM for every considered customer 
sector was obtained through the equation (1) and is 
presented in the Table 1. Moreover, the PCM parameters 
for the composite Industrial-Residential sector were 
obtained applying the procedure exposed in [8] and they are 
reported in Table 2. Then, the FCMs corresponding to 
every considered customer sector were computed and they 
are presented in Table 3. 
The reliability worth assessment was tackled depending on 
the COC model in different manners. Namely: (1) 
Considering the AACM, the analytical assessment of the 
reliability worth was applied. (2) On the other hand, 
sequential Monte Carlo simulations (SMCS) were 
conducted to evaluate the reliability worth considering the 
PCM. The SMCS was required to meet the criteria of α = 
10% and MaxError = 7.5%. (3) Lastly, Considering the 
FCM, the analytical assessment of the reliability worth was 
used. Now, the results of the reliability worth assessment 
are presented.  
It found that the ECOST and IEAR values, which are 
reported in Table 7 and Table 8 respectively, are different 
between the AACM and PCM cases.  
These differences basically fall on the COC models. For 
instance, F1 and F3 which are compounded only by 
residential customer, have PCM-ECOST and PCM-IEAR 
values higher than the corresponding AACM-ECOST and 
AACM-IEAR ones.  
Conversely, F2 and F4 which have industrial customers, 
show PCM-ECOST and PCM-IEAR values lower than the 
corresponding AACM-ECOST and AACM-IEAR ones. In 
these cases, it can infer that using the AACM, which does 
not considered the variation of the cost data, might 
overvalue the ECOST and IEAR in F1 and F3.  
On the other hand, analyzing the IEAR values for a specific 
feeder and COC model, it can realize that this indicator is 
scarcely disturbed by the protection philosophy. Thus, 
IEAR would only depend on the customer type and DisS 
topology. 

Table 7 - ECOST Given by AACM and PCM 
ECOST 
(k$/yr) 

ECOST 
(k$/yr) 

ECOST 
(k$/yr) Feeder Approach 

Case 1 Case 2 Case 3 
AACM 7.099 2.492 4.505 

F1 
PCM 8.534 3.368 6.614 

AACM 30.336 22.109 26.034 
F2 

PCM 20.919 15.207 18.251 
AACM 4.822 1.923 3.087 

F3 
PCM 5.988 2.583 3.984 

AACM 164.340 62.039 134.060 
F4 

PCM 106.894 43.629 93.249 
 

Table 8 – IEAR Given by AACM and PCM 
IEAR 

($/kWh) 
IEAR 

($/kWh) 
IEAR 

($/kWh) Feeder Approach 
Case 1 Case 2 Case 3 

Analytical 0.519 0.506 0.483 
F1 

SMCS 0.660 0.692 0.699 
Analytical 14.717 14.717 15.338 

F2 
SMCS 10.344 10.394 11.656 

Analytical 0.519 0.506 0.483 
F3 

SMCS 0.682 0.711 0.657 
Analytical 9.096 9.382 9.554 

F4 
SMCS 6.084 6.638 6.477 

 
Moreover, it can observe in Figure 2 that the IEAR 
cumulative probability functions, which were obtained for 
every case by the SMCS, are quite similar. That reinforces 
the fact that the IEAR hardly depend on the protection 
philosophy of the feeders.  
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Figure 2 – Cumulative Probability IEAR – Feeder1 and Feeder 4 

 
Whereas, Figure 3 depicts that the ECOST are highly 
dependent of the protection philosophy used in the feeders 
since the cumulative probability curves for F1 and F4 cases 
are really different between each other. Regarding the 
FCM, Table 9 and Table 10 show the results of the 
reliability worth assessment which are trapezoidal fuzzy 
numbers. Comparing ECOST and IEAR given by the 
AACM and PCM (Table 7 and Table 8) to the 
corresponding fuzzy results given by the FCM (Table 9 and 
Table 10), some interesting results show up. 
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Figure 3 - Cumulative Probability ECOST – Feeder 1 and Feeder 4 

   
Table 9 – Expected Cost Given by FCM  

ECOST(k$/yr) Fuzzy Mean 
Feeder Case 

a b c d (k$/yr) 
Case 1 0 0.100 0.640 5.965 2.353 
Case 2 0 0.030 0.134 2.256 0.867 F1 
Case 3 0 0.066 0.408 3.986 1.568 
Case 1 0 0.016 0.019 60.450 22.534 
Case 2 0 0.012 0.014 44.057 16.423 F2 
Case 3 0 0.014 0.020 78.065 29.098 
Case 1 0 0.067 0.425 4.069 1.603 
Case 2 0 0.023 0.103 1.741 0.669 F3 
Case 3 0 0.044 0.268 2.747 1.078 
Case 1 0 1.527 2.429 272.636 102.200 
Case 2 0 0.487 0.935 116.840 43.757 F4 
Case 3 0 1.153 1.852 382.815 143.120 

 
Table 10 – IEAR Given by FCM 

IEAR($/kWh) Fuzzy Mean 
Feeder Case 

a b c d ($/kWh) 
Case 1 0 0.007 0.047 0.436 0.172 
Case 2 0 0.006 0.027 0.458 0.176 F1 
Case 3 0 0.007 0.044 0.428 0.168 
Case 1 0 0.008 0.009 29.326 10.932 
Case 2 0 0.008 0.009 29.326 10.932 F2 
Case 3 0 0.008 0.012 45.994 17.144 
Case 1 0 0.007 0.046 0.438 0.173 
Case 2 0 0.006 0.027 0.458 0.176 F3 
Case 3 0 0.007 0.042 0.430 0.169 
Case 1 0 0.085 0.134 15.090 5.657 
Case 2 0 0.074 0.141 17.669 6.617 F4 
Case 3 0 0.082 0.132 27.282 10.199 

 
For instance, feeders only with residential customers, F1 
and F3, reported AACM-PCM ECOST and IEAR higher 
than the respective d parameters. Namely, this means that 
the former values are outside of the support set of the 
corresponding fuzzy numbers, i.e. interval [a, d]. Equally 
interesting is that for feeders with some industrial load 
component, such as F2 and F4, the AACM-PCM ECOST 
and IEAR are contained within the support set of the 
respective fuzzy numbers, i.e. interval [a, d].  

The aforementioned suggests that for F1 and F3 the 
ECOST and IEAR might result an overvaluation if the 
reliability worth is carried out with the AACM or PCM. 
Meanwhile, ECOST and IEAR of F2 and F4 would be 
suitable indicators since they are within the support set of 
the respective fuzzy number. Figure 4 shows the fuzzy 
IEAR for F2. It can observe that IEAR for Case 1 and Case 
2 are exactly the same (Table 10). However, the fuzzy Case 
3 IEAR is different in the vertex d. This is mainly 
ascribable to the log-log interpolation applied to obtain the 
FCM in non-surveyed outage durations. This effect was 
more remarkable in the F2 and F4 Cases than in the F1 and 
F3 Cases. As can see in Figure 5, the tree fuzzy numbers are 
very close to each other. These results suggest that IEAR is 
very stable despite the COC model that had been used.  
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Figure 4 – Fuzzy IEAR for Feeder 2 Cases 

 
Finally, Table 9 and Table 10 report in the seventh column 
the result of calculating the Fuzzy Mean. This was 
accomplished in order to make comparison among the 
obtained fuzzy numbers [10]. Broadly speaking, computing 
the fuzzy means implies the application of the Mellin 
Transform, which is deeply described in [10] and it is out of 
scope of this paper.  
The fuzzy means calculation is not computationally 
demanding and is very convenient to carry out comparison 
and ranking operations in presence of uncertainty which has 
been modeled by means of trapezoidal or triangular fuzzy 
numbers. 
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Figure 5 – Fuzzy IEAR for Feeder 3 Cases 
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CONCLUSIONS 
In this paper three different COC models have been used to 
carry out the reliability worth assessment in a DisS. The 
AACM, PCM, and FCM, in distinct ways, incorporate the 
customer perception regarding the DisS reliability into the 
reliability worth assessment. AACM used in this paper is 
based on average value of the customer cost data for 
specific outage duration. Being its more remarkable 
weakness the disregard for the natural variability of the 
actual customer cost data. To cope with that, PCM provides 
a structured framework to handle the uncertainty in the 
customer cost data by means of normal probability 
distributions. Because of that, PCM is more complicated 
than AACM. Moreover, to use the PCM in reliability worth 
assessment, Monte Carlo Simulations are indispensable. 
Therefore, the required computational effort might become 
a drawback and it is also likely that slow convergence 
problems occur. On the other hand, FCM implicitly takes 
into account the bias and the skewness of the entire data set 
for particular outage duration. Accordingly, FCM captures 
and portrays these characteristics by means of trapezoidal 
fuzzy numbers. The determination of the fuzzy 
representation is an open question and could be biased to 
another fuzzy representation. However, the reported 
approach deals with the data bias and skewness, which are 
really incorporated within the final FCM. 
Unlike what happens with PCM, FCM can be perfectly 
used with an analytical reliability assessment what becomes 
very attractive since the computational efficiency and lower 
computing time are guaranteed. Meanwhile, the results 
provide with enough evidence to confirm that IEAR is very 
stable regardless COC model applied and the protection 
philosophy used in radial DisS. Therefore, IEAR shows 
suitable characteristics to be considered as the monetary 
value or price of the energy not-supplied. 
Moreover, the ECOST results portray its high dependence 
on the protection philosophy. Finally, all the ECOST 
results indicate (Table 7 and Table 9 text in bold letter), in 
different ways and from different approaches, that the Case 
2 in every considered feeder provides with the lowest 
outages costs. In conclusion, regardless the COC models, 
the decision-making process conduct to the same problem 
solution. 
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