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ABSTRACT 

A new technique that can be implemented for power quality 
monitoring is proposed. A Windowed Wavelet transform 
and monitoring the maximum coefficient at each resolution 
are used to design a new monitoring tool with high 
accuracy. In this paper the proposed technique is verified 
by monitoring distorted signals, detect and localize these 
disturbances in time and generate stable features of the 
50Hz component during signal's magnitude variation and 
phase shift changes in a noisy environment. 

INTRODUCTION 

The features extracted from power system disturbances 
could be detected for various time intervals and localized 
anywhere in a wide frequency band. These disturbances 
could be of high frequency nature such as transient events, 
periodic such as harmonic distortion or could be at the 
power system frequency (50 or 60 Hz) such as sag and swell 
phenomena. Disturbances could have steady-state or non 
stationary behavior [1]-[2].  
 
A major concern arising from power quality monitoring is 
the size of data to be collected and the number of techniques 
to be implemented. Different data loggers are available that 
can collect large amount of data. Monitoring the wide band, 
where a distortion event may take place, requires a high 
sampling rate which results in capturing large data that may 
lead to rewriting over the oldest stored data or requiring 
additional high cost storing devices. The other major 
concern is the number of techniques, such as Fast Fourier 
transform (FFT), short time Fourier transform (STFT), 
Wavelet transform (WT), to be implemented in designing a 
tool that can monitor simultaneously low frequency or 
harmonic distortion, long and short duration variations, 
transient events and non-stationary disturbances that varies 
in frequency and/or magnitude. 

 
Power system disturbances are classified in different 
categories according to magnitude, time duration and 
frequency content [1]. Basis such Fourier, Gabor, wavelet, 
and wavelet-packets are efficient representation for certain 
classes of signals, but there are many cases where a single 
basis system is not effective. For example, the Fourier basis 
is an efficient system for harmonic distorted periodic 
signals, but poor for transient and non-stationary signals.  

 
Significant improvements in monitoring efficiency can be 
achieved by combining several basis systems [7]. That is 
can be achieved by designing a single expansion system 
( )t(n,k ) to handle several different classes of signals, each 

of which are well-represented by a particular basis system. 
However, there are different criteria that have been 
identified as important and should be considered to approve 
the new basis system:  
 

Sparsity: The expansion coefficients of any distortion 
event should have most of important information in the 
smallest number of coefficients so that the others are small 
enough to be neglected or set equal to zero. This is 
important for data management, compression and denoising. 

Separation: Power system disturbances consist of a linear 
combination of signals with different characteristics, the 
expansion coefficients should clearly separate those signals. 
Features of interest that classify each disturbance should be 
separated and localized at different resolutions. This is 
important for detection and classification.  

Super-resolution: A distortion event superimposed on a 
pure 50Hz component and its characteristic set of expansion 
coefficients should have much better resolution than that 
with a traditional basis system. This is likewise important 
for detection, classification and estimation. 

Stability: The expansion coefficients that extracted from a 
reference signal (50Hz) should not be significantly changed 
by disturbances or noise. This is important in auto-
monitoring application and data measurement. 

Speed: The numerical calculation of the expansion 
coefficients in the new system should be of order O(N) or 
O(N log(N)). This is important for real-time application. 
 
The goal of this paper is to introduce Windowed-Wavelet 
transform as a new tool that can enhance wavelet based 
tools. The proposed tool generates stable features of the 
50Hz component during signal variation and phase shift 
changes in a noisy environment. The proposed technique 
can be applied to monitor all expected power quality 
problems.   

WAVELET MULTI-RESOLUTION ANALYSIS 

Wavelet analysis techniques have been proposed 
extensively in the literature as a new tool for monitoring and 
analyzing different power system disturbances, data 
compression and de-noizing [3]-[5]. The wavelet transform 
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is a mathematical tool that cuts up data, functions or 
operators into different frequency components, and then 
studies each component with a resolution matched to its 
scale [6]. The discrete wavelet transform (DWT) represents 
the signal )t(x  as a series of approximate )k(c j and detail 

)k(d j expansion coefficients.  

 


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o )kt2(2)k(d)kt()k(c)t(x     (1) 

The discrete wavelet coefficients measure the similarity 
between the signal and the selected wavelet )t( ; hence 

give a time-frequency localization of the signal. Using 
Mallats�s algorithm, the detail coefficients at resolution (j-1) 
are:  

 )k(d 1j  

m
1 )k2m(h )m(c j                  (2) 

where )k(h1  represent the coefficients of the selected 

wavelet function. These expansion coefficients represent a 
components that are local and easier to interpret [8].  
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Fig. 1. Direct application of WMRA on a pure signal using a- Db4 wavelet, 
b- Db40 wavelet 

   
Having 50Hz (or 60Hz) reference pure signal is an important 
advantage in power system applications as compared with 
other disciplines. This advantage should be efficiently 
utilized by defining the resolution levels that contains the 
50Hz signal as a reference resolution to monitor normal and 
abnormal operation conditions.  Fig. 1 shows 8 resolutions of 
the wavelet expansion coefficients of a 50Hz pure signal. 
Daubechies 4 (Fig. 1a) and Daubechies 40 (Fig. 1b) were 
used to decompose the signal. As exposed by the Figure, 
most of the pure signal energy is localized at the 5th 
resolution (reference resolution) as presented by the detail 
coefficients ( 5d ). However, other sets of coefficients are 

leaked and localized at other upper and lower resolutions. 
This leakage in the expansion coefficients comes partially 
from overlapping region due to the non-sharp cut�off 
frequency response of the selected mother wavelet. Further, 
in DWT the expansion coefficients jc  and jd  are resulted 

from convolution and decimation. Convolving the wavelet 
filter coefficients by the approximate coefficients may 
generate a set of coefficients at the start and end of the 
process that does not represent the signal at that resolution 
(for example, 1d , 2d  and 3d  in Fig. 21). These coefficients 

will generate other coefficients at other resolutions and hence 
scatters the pure signal�s energy from the reference 
resolution to other resolutions. Furthermore, besides the 
computational complicity, while considering mother wavelets 
with high vanishing moments, all coefficients should be 
considered in the monitoring and classification process. 

ENHANCING WAVELET MONITORING 

One may design a single expansion system that handle 
several different classes of power distorted signals by 
developing a local trigonometric (local cosine and local 
sine) basis systems. In order to construct the trigonometric 
bases we have to choose a window function )t(wk and a 

trigonometric function )t( to generate orthogonal 

basis )t(n,k , that can be represented as [7]:  

)t()t(w)t( kn,k      (3) 

and 
)t)n((cos)t(           (4) 

Trigonometric functions are selected because windowed 
trigonometric bases can be orthonormal, and the window 
can have a finite Heisenberg product [7].  
 
Therefore using (3), any power signal )t(f can be 

represented in terms of the expansion coefficients ka in the 

form: 

)t()n(a)t(f
n,k

n,kk                         (5) 

By requiring orthogonality of the basis functions, the 
expansion coefficients are computed by an inner product as: 

 
 dt)t()t(w)t(f)t(,)t(f)n(a kn,kk      (6) 

Any power quality phenomena as indicated in [1] and [2] 
can be simulated in terms of summation of different 
trigonometric signals. Therefore, we may strengthen the 
important criteria (sparsit, separation, super-resolution, and 
stability) by increasing the similarity between the signal 
under process and the basis system. This can be achieved 
generating a windowing version of the signal )t(wk )t(f  

that will increase the similarity between the signal under 
process and the selected wavelet function. Kaiser�s window 
of length L  is selected in the windowing process, which 
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mathematically presented as: 
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Using Mallat�s algorithm, the set of expansion coefficients 
resulted form a windowing version of the signal at certain 
resolution can be defined as:  

)k(wd j  

m
1 )k2m(h )m(wc 1j             (8) 

A threshold value ( ) is used to ignore the coefficients of 
small values. The threshold value is selected by monitoring 
the maximum coefficients extracted from a pure 50Hz 
component at each resolution level using WMRA and 
proposed technique. The selected threshold values 
(excluding the 5th resolution) in this application is 105% of 
the values indicated in Table I. The value of the maximum 
coefficient at the 5th resolution is normalize and used to 
monitor magnitude variation at that resolution. The absolute 
value of the detail coefficients ( |)k(wd| j ) are used to 

localize either positive or negative expansion coefficients 
that carry most of the signal�s energy. 

 
Table I: Threshold values 

Resolution 
Level 

1 2 3 4 5 6 7 

Maxj |wd|  0.0100 0.0182 0.0579 0.4555 4.5100 0.6003 0.4931 

Maxj |d|  0.0189 0.0538 0.2071 1.6083 6.6424 4.8153 2.4778 

 
Only the maximum coefficient can be considered in this 
application for monitoring the distorted signal.  

)]k(wd[axM)]N(wd[ jMaxjj                (9) 

where, jN  are indices of the localized coefficients.  

APPLICATION AND RESULTS   

The proposed technique in this paper was evaluated by 
monitoring the changes in the 50Hz component of a 
simulated signal using Matlab. The results of the proposed 
technique are compared with that of applying directly the 
wavelet multi-resolution analysis. The simulated signal 
constructed from a pure signal that vary in magnitude and 
phase shift as follows: 






















)tsin(1.0

)tsin(0.5-

)tsin(1.5

)tsin(0.5

)tsin(1.0

)t(f











         

4

42

32

21

1

tt

ttt

ttt

ttt

tt











              (10) 

 
The distorted signal is simulated with a sampling rate of 
2.2kHz. The size of Kaiser�s processing window is selected 
with a length of 6-cycles and the coefficient   for Kaiser's 
window is selected equal to 10. The sliding rate of Kaiser's 

window is selected as 22 samples (1/2 cycle). The following 
features are considered in monitoring the resolution where 
50Hz component reside: 
 
1. The magnitude variation of the maximum coefficient at 

5th resolution. 
2. The stability of the index of the maximum coefficient at 

the 5th resolution (Coefficient location). 
3. The sign of the maximum coefficient as data slides into 

Kaiser's window (Coefficient sign).  
 
The comparison between a directly application of wavelet 
multi-resolution analysis (WMRA) and the proposed 
technique is shown in Fig. 2 and Fig. 3.  
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Fig. 2:Monitoring the maximum coefficient at 5th resolution using WMRA. 
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Fig. 3: Monitoring the maximum coefficient at 5th resolution using the 
proposed technique. 

 
Fig. 2 shows the results of monitoring the maximum 
coefficient at the 5th resolution using WMRA. Fig. 2a shows 
the simulated signal and the solid line represents the 
magnitude variation of the signal. This variation is 
measured using the normalized value of the maximum 
coefficients shown in Fig. 2b. The magnitude measurement 
show accurate results during normal operation condition. As 
signal variation starts WMRA can detect magnitude 
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variation but can not trace these variation as the as data 
processed. Fig. 2c shows the index of the maximum 
coefficient data processed.  This index is not stable, as 
signals' magnitudes vary the location of the maximum 
coefficients at 5th resolution change. During normal 
operation condition the sign of the maximum coefficient 
varies regularly between positive (logic +1) and negative 
(logic -1) as shown in Fig. 2d. As the phase shift in the 
signal is changed, the sign of the coefficients changes but in 
non-regular way as shown by the dotted circles on Fig. 2d. 
These changes in the sign represent the changes in the 
original signal peak due to phase shift.  
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Fig. 4: Monitoring the maximum coefficient at 5th resolution of the signal 
distorted with high noisy level using WMRA. 
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Fig. 5: Monitoring the maximum coefficient at 5th resolution the signal 
distorted with high noisy level using the proposed technique. 
 

Fig. 3 shows the results of monitoring the maximum 
coefficient at the 5th resolution using the proposed 
technique. The variation in the magnitude is accurately 
traced as shown in Fig 3a.  Fig. 3b and 3c show the 
magnitude of the maximum coefficients and their indices as 
data processed through Kaiser's window. The coefficient 
index is fixed and stable, as signals' magnitudes vary the 
location of the maximum coefficients at 5th resolution do not 
change. As the phase shift in the signal is changed, the sign 
of the coefficients changes in a regular way as shown by the 
dotted circles on Fig. 2d. 

The simulated signal is further corrupted with a random 
noise of 75% in magnitude and the proposed technique is 
compared with a direct application of WMRA. The results 
of this comparison are shown in Fig. 4 and Fig. 5. The 
proposed technique show accurate and stable features with a 
noisy data. The magnitude, location and the sign of the 
coefficients are all stable similar to the case with zero noise 
level.  
 

CONCLUSION   

Disturbance can be detected, measured and classified by 
utilizing Windowed-Wavelet transform and monitoring the 
maximum coefficient at each resolution level. The proposed 
technique shows that we can generate a sharp reference and 
monitor different disturbances that may reside in different 
frequency bands by processing small numbers of expansion 
coefficients.  
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