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ABSTRACT 
The approach to the circuit theory based on the method of 
the state equations is introduced and applied to single-
phase networks that include circuit breakers. After put in 
evidence the asymmetry of the three-phase circuits in pres-
ence of circuit breakers, the state analysis in terms of phase 
variables is worked out. The further use of Park transform 
finally emphasizes the role of the imaginary power on the 
energetics in the three-phase interruption. 

INTRODUCTION 
Traditionally, the dynamic analysis of the three-phase 
power systems assumes time the symmetry and the linearity 
of the circuit. This allows to make use of the equivalent 
single-phase networks and the Fortescue transform. The 
following introduction, usually made upon an experimental 
base, of the electric arc model, usually in the form elabo-
rated by Mayr and Cassie, removes, with a significant con-
ceptual and computational effort, such preliminary hypothe-
sis.  
The present paper shows that the three-phase power net-
works, usually considered as physically symmetric, become 
asymmetrical during the opening operation, because of the 
presence of non-linearity of the three electric arcs. As a 
matter of fact, the three different arcs are characterized by 
the same constitutive relation R=F(i), but the non linearity 
of the functional F leads to an instantaneous asymmetrical 
condition. In this condition, the transient analysis by using 
single-phase or sequence components network is not possi-
ble. Instead, the transient analysis requires an approach 
based on state equations and on phase variables. This 
method is used in the present paper.  
Furthermore the paper shows that, applying Park approach 
to the obtained phase quantities, it is possible to analyse all 
the power and energy aspects related to the three-phase 
interrupting processes by using the Park imaginary power. 
This quantity is usually adopted in the three-phase power 
quality analysis. The Park imaginary power affects the Joule 
integral and the breaking work of the switch present in the 
power system. Consequently, it is necessary to take it into 
account during the system design.  
Some numerical examples, related to single- and three-
phase applications, show the validity of the proposed 
method. 

SWITCHING ARC 
For what concerns the analysis of simple switching tran-
sients and for carrying out large system studies, it is often 
sufficient to model a circuit breaker as an ideal switch. 
When, studying arc-circuit interaction, the influence of the 

electric arc on the system elements is of importance, a thor-
ough knowledge about the physical processes between the 
circuit breaker contacts is absolutely necessary. 
Arc modelling has always been one of the main topics in 
circuit breaker research. Arc models can be classified in 
three categories. Physical arc models are based on the equa-
tion of fluid dynamics and obey the laws of thermodynam-
ics in combination with Maxwell’s equations. They consists 
of a large number of differential equations. Black box mod-
els, where the arc is described by a simple mathematical 
equation and provides the relation between the arc conduc-
tance and measurable parameters such as arc voltage and 
arc current. Usually, black box models consist of one or two 
differential equations and they are very useful to simulate 
arc-circuit interaction in network studies.  
Parameter models are a variation on black box models in the 
sense that more complex function and tables are used for the 
essential parameters of the black box models.  
The classical black box models are the Cassie model and 
Mayr model or a combination of the two models [1-3].  

SINGLE-PHASE CIRCUIT 
When opening a circuit breaker, the dimensions and the 
frequencies of the electric arc fully allows the theory of the 
electric networks with lamped constants. The transient 
analysis of circuits with electric arc – become complicated 
because of the non-linearity of the arc – may be carried out 
with the systematic, topological and numerical approaches 
that belong to the modern state equations theory [4]. In such 
case, the electric arc is formally considered as any other one 
port of the network, a priori non-linear and time-varying, of 
which is known in advance the input-otput relation.  
Under the systematic aspect (Fig.1), the networks during the 
operating phases , adopt as electrical state variables the flux 
ψ or the current i for the inductors and the charge q or the 
voltage v for capacitors. In addition to these is added up a 
suitable state variable r that 
represents the component circuit 
breaker now seen as a dynamic 
element. 
The Mayr Cassie black box 
models brings to a state equation 
as follows: 

(1) ( )d r F r ,i
dt
v r i

⎧ =⎪
⎨
⎪ = ⋅⎩

 

where the algebraic relation 
voltage-current represents a 
resistance and F depends on the used arc models [1-3].  

Fig.1. The systematic reading.
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For what concerns the topological approach, confirming as 
preliminary hypothesis, in case of non-degenerating net-
work, the placing of the inductors on the chords and the 
capacitors on the branches, for the dynamic one port 
breaker its inserting on the tree or cotree branches does not 
depend on any preliminary rule and it is carried out time by 
time according to the typlogy of the network in which is 
located. This comes from the algebraic characteristic of the 
voltage-current relation (1) that matches formally the dy-
namic component arc to any other resistance of the network. 
The numerical integration of the complete network model 
brings to the descriptive port quantities {v(t),i(t)} associated 
with the breaker (Fig.2). In such conditions, naming ti and tf 
respectively the starting and the ending instants of the inter-
rupting process, it is possible to deduce, in particular, the 
maximum arc current IM, related to the requested interrup-
tion power, and the recovery voltage vr(t), from which de-
pends the potential subsequent restart of a new arc: 
(2) ( ){ }

( )
i=max tM f

r r f

I i t t t

v v t t t

⎧ ≤ ∀ ≤⎪
⎨

= ∀ ≥⎪⎩

 

With reference to the electri-
cal energetics of the inter-
ruption phenomenon, are 
then defined the Joule inte-
gral: 

( )2 2 2
ft

e f i e
ti

i dt I t t I T⋅ = ⋅ − = ⋅∫  

linked to the rms arc current Ie and, as a measure of the 
thermal stress of the component, the electrical breaking 
work elaborated by the breaker: 
(3) ( ) ( ) ( ) = ⋅ = ⋅ − = ⋅∫

f

i

t

f i
t

L v t i t dt P t t P T   

In the Fig.3a, as an example, is presented the elementary 
case of a serie RLC circuit during the opening phase. The 
breaker (Fig.3b) is in this case positioned on the tree. In the 
Fig.3c are respectively presented, as a confirmation of the 
uniformity of the approach, the two different network mod-
els according to the two approaches of Mayr and Cassie. 
The network in Fig.3d, of the second order, is instead re-
ferred to an electrical line in the operating state. In such a 
case, given the presence of the capacitor on the tree, the 
breaker is necessarily located on the cotree (Fig.3e). The 
model derived, characterized by the resistance r of the arc 
dynamics (1), is formalized in the following way: 

1 0
1 1 1

L L

c C

i ir / L / Ld e
v v/ C /( rC ) /( rC )dt

− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

In the Fig.3f is depicted the whole interrupting and recovery 
transient of the circuit. 
Concerning the method with the Laplace transform [5], 
depending on the hypothesis of linearity of the network, 
could be used, once interrupted the current, only for the 
recovery phase. With two essential reserves that cannot be 
ignored. The first one is related to the initial conditions 
{i(0), vc(0)} to be adopted in the approach with Laplace. 
These are concerned with the final part of the transient of a 

non-linear circuit, which is possible to investigate only 
through a numerical approach. The second reserve is related 
to the fact that the investigation with Laplace of the recov-
ery phase, assuming the extinguished arc to the vacuum, is 
not able to study the subsequent potential restart.  

THREE-PHASE CIRCUIT 
Usually the three-phase analysis, thanks to the symmetry 
typical of these networks, leads, in terms of sequence com-
ponents, to a more compact complex single-phase expres-
sion. In such conditions is sufficient to read in a complex 
form the equations in real form deducted from the single-
phase case and substitute the circuit elements with the three-
phase sequence correspondent ones. Concerning the dy-
namic analysis of three-phase networks, under the hypothe-
sis of symmetric network, it is caried out in terms of instan-
taneous sequence components by means of the Park trans-
form. The obtained three-phase state model can advanta-
geously make use the same numeric algorithms and the 
same topologic approach already consolidated for the sin-
gle-phase case. Likewise there fully applies all the energetic 
approaches that belong to the Park formalism. Among these 
ones, important for the role in presence of distorsion and 
asymmetry, is the imaginary power. 
In the case of three-phase networks with electric arc the 
situation becomes completely different: it is now not possi-
bile an approach based on the sequence components. This 
comes from the fact that, even although the three distinct 
arcs may be considered (for evident reasons of construction 
symmetry) with the same constitutive relation R=F(i), as a 
matter of fact the non-linearity of the functional F intro-
duces in the three arc resistances a condition of instantane-
ous asymmetry of the following type: 

( )
( )
( )

0 0
0 0
0 0

a a a a a

b b a b c b b b

c c c c c

R F i v R i
R F i R R R v R i
R F i v R i

=⎧ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇒ ≠ ≠ ⇒ = ⋅⎨ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩

 

for which is not possibile to define the equivalent single-
phase sequence circuits. The dynamical analysis, not any-
more single-phase as in the case of symmetric networks, 
must then be referred to the phase variables [yabc(t)]. 

The Park method for the three-phase arc 
In case of three-phase networks with electric arc, once inte-
grated the model with the method of the state equations the 
matrix functions {[iabc],[vabc]}are obtained as port variables 
of the three-phase arc. 
Hence the (2) can be read in the following three-phase form: 

( ){ }
[ ] ( )

i=max t

a ,b ,c

M a ,b ,c f

r r f

I i t t t

v v t t t

⎧ ≤ ∀ ≤⎡ ⎤⎣ ⎦⎪
⎨

⎡ ⎤= ≤ ∀⎪ ⎣ ⎦⎩

 

The passage to the Park variables [dq0] can be achieved in a 
second moment after the integration process, but always in 
an exclusive energetic range.  
The three arc currents [ia,b,c] can be matched the correspon-
dent three-phase Park arc current [2]: 

 
Fig.2. Single phase arc 
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Fig.4. Instantaneous 
components of the 
Park arc current.

(4) ( ) ( ) ( ) ( ){ } ( ) ( )

( )

22  α α  
3

=exp 2 3

Ij t
a b ci t i t i t i t i t e

j /

ϑ

α π

⎧
= + ⋅ + ⋅ =⎪

⎨
⎪
⎩

 

Also to the three arc voltages [va,b,c] correspondents the 
three-phase Park voltage: 

(5) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( )

22   F α F α F  
3

v

a a b b c c

j t

v t i i t i i t i i t

v t e ϑ

= ⋅ + ⋅ ⋅ + ⋅ ⋅ =

= ⋅

 

As can be observed, even although it is a resitive circuit, the 
Park arc voltage results to be instantaneously shifted of the 
angle ϑI(t)-ϑV(t)=ϕ(t) respect to the Park arc current. Even 
although it is not related to any process of energy storage, it 
is consequence of the instantaneous arc asymmetry intro-
duced by the non-linearity.  
The Park approach confirms anyhow its conceptual and 
practical importance under the energetic aspect. Once asso-
ciated to the three-phase arc functions {[va,b,c],[ia,b,c]} the 
correspondant Park quantities (4,5) it is definable, with a 
formalism that confirms the metrological correspondence 
with the single-phase case, the energetics of the “three-
phase electric arc” based on the instantaneous complex 
power ( ) ( ) ( ) ( ) ( )Pa t v t i t p t jq t= ⋅ = + . 
From this, can be deducted the real component of the 
power: 

(6) 
( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( )1 f

i

a ,b ,c a ,b,c ft

t

T
t

p t v t i t e a t v t i t

P e a t dt p t
T

⎧ = ⋅ = ℜ = ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎪⎪
⎨

= ℜ ⋅ =⎪
⎪⎩

∫
 

and, linked to both the distortion of the waveforms and the 
asymmetry introduced by the non-linearity of the three-
phase electric arc, the imaginary component: 

(7) 
( ) ( ){ } ( ) ( )

( ) ( )1 f

i

q

t

P T
t

q t m a t v t i t

Q m a t dt q t
T

⎧ = ℑ = ⋅
⎪⎪
⎨

= ℑ ⋅ =⎪
⎪⎩

∫
 

This physical quantity affects, as 
index of the “three-phase unbal-
ance” instantaneously caused by the 
arc, the Joule-Park integral as re-
sults from the following expression: 

(8) { }
2 2

2 2 2 2
2

f f

p q p

i i

t t
P

e e e e
t t

p qi i* dt I T dt I I T I T
v
+

⋅ ⋅ = ⋅ = = + ⋅ > ⋅∫ ∫  

Always due to the presence of the quadrature component 
iq(t), the modulus of three-phase breaking work becomes as 
follows: 
(9) ( ) ( ) 2 2 2 2

0

 
T

p q PL v t i t dt L L P Q T= ⋅ = + = + ⋅∫  

It could be, together with the sizing classical three-phase 
power: 
(10) ( ) ( ) ( ) ( )

0 0

1 1  
T T

e eS v t v t dt i t i t dt V I
T T

= ⋅ ⋅ ⋅ = ⋅∫ ∫  

a useful element for the breaker design. 

SOME EXAMPLES 
We consider the simple but representative case of Fig.4a. 
When the breaker is closed the network is linear and sym-
metric. The breaker opening introduces the three non-
linearities due to the electric arc, and, together them, the 
asimmetry. It must be investigated in the phases domain 
with the help of method of the state equations. In such a 
case the three arc resistors must be placed onto the tree. 
Fig.5a shows the state matrix equation. This model, as con-
sequence of the three-phase network degeneracy, does not 
appear in the normal form. In Figg.5b-e are reported the 
obtained diagrams. The energetic approach, developed with 
the Park formalism (Table 1), confirms the role of the com-
plex power and work. 

CONCLUSIONS 
The analysis connected to the arc phenomena has been 
incorporated, under the systemic and topologic aspect, in 
the modern state approach. The obtained results show new 
perspectives of investigation. In particular, given the flexi-
bility and computational power of the method, there is no 
limitation for the arc model and the network complexity. 
The three-phase case presents a very specific limit: the 
three-phase arc, because of its non-linearity, causes dis-
simetry. The Park approach, linked to instantaneous se-

 
(a)  

(b) 

2 2 3

2
0

1 (  ) 1

1 11
1 0 0

τ τ
⎧ ⎛ ⎞⎛ ⎞

= − = −⎪ ⎜ ⎟⎜ ⎟
⎪ ⎝ ⎠ ⎝ ⎠
⎨
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Fig.3 Dynamic analysis, according to the models of Mayr and Cassie, of opening transients in power networks. 
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quence circuits, is therefore not allowed. The state analysis 
has to be performed through real three-phase method. The 
following energetic approach with Park emphasizes the role 
of the three-phase arc as an imaginary power source and the 
subsequent need to adopt, in a new form, the complex 
breaking work. 
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Fig.5. Three-phase arc circuit. 

Table 1. Significant computed quantities. 

 Three phase Equivalent 
Single-phase 

Arc dissipated power [W] 4.85·106 3.72·105 

Breaking energy  [J] 9.69·106 7.10·106 

Arc three-phase rms voltage [V] 5.44·106 3.84·106 

Arc three-phase rms current [A] 1.38·104 0.95·104 

Three-phase sizing power [VA] 7.52·1010 3.67·1010 


