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ABSTRACT 
In this paper some patterns based on discrete Wavelet 
transform are studied for detection and identification of 
both, low frequency disturbances, like flicker and 
harmonics, and high frequency disturbances, such as 
transient and sags. Daubichies4 Wavelet function is used as 
a base function to detect and identify due to its frequency 
response and time localization information properties. 
Based on these patterns, power quality disturbances are 
automatically classified by support vector machines (SVM). 
Thus, Radial Base Function (RBF) was used as a kernel, 
because RBF requires only two parameters (σ and C) and 
cross validation technique and grid search were used in this 
work. SVM exhibit a good performance as classifier (90 
percent of success for most disturbances) in spite of 
similitude between some disturbance patterns. 

INTRODUCTION 
Electromagnetic disturbances cause big economic losses 

for industry and residential users. Because of this, 
monitoring of power quality (PQ) disturbances of electrical 
energy is fundamental to offer solutions to industrial and to 
electrical areas. Wavelet Transform (WT) processing 
technique has been proposed for power quality monitoring 
given its time-frequency multiresolution analysis property. 

WT properties, like limited effective time duration, band 
pass spectrum, waveform similar to disturbance and 
orthogonality, allow locating information in time and 
frequency domains. Thus, it is possible to obtain high 
correlation when PQ disturbances occur and decompose 
these events into different components without energy 
aliasing. 

There are several studies [1]-[3] where WT is used for 
detecting and identifying disturbances with Wavelet 
function Daubichies 4. Likewise, neuronal networks have 
been used to classify different disturbances from its WT. [4] 
shows a method of PQ disturbances detection and 
classification based on heuristic rules. However, there are 
no references about using other techniques of classification 
like Bayesian or support vector machines (SVM) for PQ 
disturbances. 

 In this article, mathematical concepts of Discrete 
Wavelet Transform (DWT) are described. The properties 
that make DWT effective are also discussed. Then, 
strategies for PQ disturbances detection and identification 
by using DWT are studied. Strategies used for automatic 
classification of these disturbances are also presented. 
Finally, results of simulation and conclusions of this 

investigation are shown. 

DISCRETE WAVELET TRANSFORM 
Fourier Transform (FT) only allows the study of a fixed 

interval of a transient disturbance, but it is not possible to 
know its location. Then, a dynamic scheme is necessary 
where, in the same coordinates system, the width of time 
and frequency windows can be varied simultaneously 
preserving resolution in both domains (time and frequency). 
This characteristic is reached by means of the time-
frequency multiresolution analysis that WT makes.  

The Continuous Wavelet Transform (CWT) is defined in 
(1),[6]:   
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Where < , >  denotes the inner product operation; ψ(t) is 
  the "mother Wavelet function" or analysis Wavelet of 
CWT. In (1) is considered that Wavelet function is a real 
value signal.  The time location is determined by the term: 

Where ψa,b(t) is a set of Wavelets generated from the 
"mother Wavelet function" ψ(t), which expands and 
attenuates, or compresses and amplifies as a increases or 
diminishes, respectively. In addition, ψ(t) moves in the time 
domain as b changes. 

The DWT is obtained by considering that parameters of 
scaling a and shifting b take discrete values: a=aj

o , b= k 
bo, aj

o, with  j, k Є Ζ,  ao > 1 and bo > 0. By 
replacing these values in (1) yields [6]: 
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Where the set of Wavelet functions ψj,k (t) is given by: 
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However, for some appropriate "mother Wavelet 
functions" and factors ao and bo, it is possible to express 
x(t) like a linear combination of Wavelet functions ψj,k(t), 
scaled and shifted.  It is required that functions ψj,k

 (t) be 
orthonormal [5], [6]. 
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ALGORITHMS 
The decomposition scheme is conformed by low-pass 

and a high-pass FIR filters, with impulse responses am and 
bm, respectively, followed by a two-decimation process.  
Therefore, if the samples cn of the signal are at the entrance 
of filters, the coefficients of approximation cn-1 will be 
obtained at the output of low-pass filter and so will be the 
detail coefficients dn-1  at the output of high-pass filter [5]: 

∑∑ −−−− ==
m

mnkmkn
m

mnkmkn cbdcac ,2,1,2,1 ;  
(5) 

With these Wavelet coefficients it is possible to 
reconstruct the signal by inserting zeros between samples. 
Then, these sequences are processed using low-pass and 
high-pass FIR filters. In Fig. 1, scheme of decomposition is 
shown. 

 
Fig. 1.  Scheme of decomposition of signal samples. 

DISTURBANCES DETECTION AND 
IDENTIFICATION 

In [7] PQ disturbances are classified as: electromagnetic 
transient, flicker, sags (dips), swells, unbalances, 
interruptions, notching and frequency variations. 

Each one of these disturbances can be detected by using 
detail sequence from the first wavelet decomposition level 
(Fig. 1). By applying again the decomposition scheme to an 
approximation sequence is possible to find new details with 
smaller frequency span than that from the detail sequence 
previously calculated. Thus, different detail levels of the 
signal (or frequency intervals) can be analyzed.  

Fig. 2 shows a set of disturbances studied in this paper 
and Fig. 4 displays their respective detail sequences from 
the first level with Wavelet function daubechies4 "db4". It 
can be noted that in Fig. 3  is possible to detect the 
beginning and/or the end of each disturbance in the first 
level of detail. This is because beginning and end of 
disturbance contain high frequencies, which are detected in 
the first level of detail. 
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  Fig. 2. Disturbances set under study. 
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Fig. 3. Disturbances detail at first level using daubechies 4.  
 
It is possible to identify disturbances using Wavelet 

coefficients energy. Signal energy can be calculated from 
DWT coefficients in each decomposition level. Therefore, it 
is possible to know signal energy distribution in the 
frequency span of each decomposition level. Depending on 
sampling frequency (Fs) and Wavelet function (db4), the 
bandwidth of each decomposition level is determined.  

[1] proposes a disturbance identification strategy that 
calculates energy distribution deviation for each 
decomposition level. Coefficients energy of each detail 
level (detail sequence energy) is calculated, for both the 
pure sinusoidal signal and the signal with disturbances, then 
they are compared by the following expression: 

100*
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Where dp(j)(%) is the deviation between the energy of the 
signal with disturbances En_dist(j) and its corresponding 
fundamental sinusoidal signal energy En_ref(j), at each 
wavelet transform decomposition level j. En_ref(m) is the 
greatest value of the fundamental sinusoidal signal energy 
which may corresponds to a different level m. 

However, [1] does not propose any method to classify the 
different types of disturbances.  
  This identification strategy, described above, has been 
adopted in this article, since it allows to obtain disturbance 
patterns with a low degree of resemblance between them 
(such as it appears in Fig. 4 by evaluating (6)), which is 
desirable for their classification. Nevertheless, it must be 
noticed that swell and flicker patterns have similar 
characteristics. Likewise, when a given disturbance is 
shifted in time domain its pattern magnitude reveals 
significant variations. This is explained by the shift no-
invariant property of WT. Because of this, it was necessary 
to scale patterns in order to obtain standardized magnitudes. 
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Fig. 4.  Disturbance patterns. 

Fig. 4 presents patterns until decomposition level 8. A 
sampling frequency of 7 680 Hz has been used. Then, 
frequencies at level 8 ideally span from 15 to 30 Hz and 
disturbances have no relevant information in this interval. 

DISTURBANCES CLASIFICATION 
Artificial Neural Networks (ANNs), Fuzzy Logic or the 

combination of them have been proposed for PQ 
disturbances classification in [2], [4], among others. On the 
other hand, Bayesian technique [8] and support vector 
machines (SVM) have been used as pattern classifiers ([9]), 
but not specifically for PQ events. 

In this study, 4 classification techniques were 
implemented in order to automatically classify disturbances 
by using their patterns based on WT. These techniques are: 
multilayer perceptron (MLP) and kohonen ANNs, Bayes 
and SVM.  

An ANN was trained with the following parameters: 
MLP network, feedforward performance function, tangent 
sigmoid activation function, 3 hidden layers, one exit layer 
and [8 6 4 1] neurons by layer. The 8 input are patterns 
based on 8 WT decomposition levels. 5 disturbance types 
sampled at a rate of 128 samples per 60 Hz cycle (s/c) were 
studied. The output is a number between 1 and 5 that allows 
classifying these 5 disturbance types. ANN parameters were 
determined according to [10]. Network training was made 
with 5 600 inputs (700 inputs for each input layer neuron) 
and 700 outputs.  Training validation was accomplished 
with 1 680 inputs (210 for each neuron at entrance layer) 
and 210 outputs.   

In this work, a database with 19 430 synthetic signals 
was generated. A number of variations were considered to 
characterize different disturbances (magnitude, starting 
point, duration, frequency, etc.) according to [7].   

Signals used for training, validating and evaluating ANN 
performance were selected from this signal database. 
However, each signal was used only once.  

The ANN previously mentioned is known as a 
supervised learning ANN because it is necessary to know 
the output corresponding to each input element.   

A Kohonen network was trained in this work. Kohonen 
network belongs to competitive networks category or self 

organizing maps (SOM), that is, non-supervised learning 
network type. These networks have a two-layer architecture 
(input-output) (a single connections layer), linear activation 
functions and unidirectional information flow (cascade 
networks). This model is called LVQ (learning vector 
quantization) [11]. This network was trained with the same 
input of that of the previous network, but output data set 
was not necessary.  The maximum allowed error was set to 
0,001 and 800 iterations were executed. 

Bayes decision technique is the base of statistical 
methods for patterns recognition.  This technique considers 
K classes denominated wk, and one input vector X. P(wk/X) 
is the aposteriori probability that can be calculated with Eq. 
(7), [8]:  

( / ) ( )( / )
( )
k k

k
P X w P wP w X

P X
⋅

=  (7) 

P(wk) is wk class probability (apriori probability). 
P(X/wk) is X probability distribution conditioned to a 
particular wk class. P(X) is X probability distribution. 

The decision rule can be stated as: “the correct class is 
the one that displays the greatest aposteriori probability”. 
From (7) a discriminating function given in (8) was 
implemented in this work.  

  )()/()( kkk wPwXPXg ⋅=  (8) 
This simplification is possible since P(X) is equal to 20% 

because there are 5 classes (disturbances). 
In recent years, SVM have shown good performance in 

patterns classification and recognition [9]. In order to 
understand the way it operates, consider a data set 
distributed in two categories as it is shown in Fig. 6. The 
linear SVM look for a hyper-plane in such a way that the 
greatest number of points of the same category are located 
at the same hyper-plane side, whereas the distance (margin) 
of such categories to the hyper-plane is the greatest [9], 
[11].   

 
Fig. 5.  Hyperplane of separation 
 

There is only one optimal separation hyper-plane (OSH), 
so the distance from OSH to the closest training pattern 
(support vector) is the maximum  [9], [11]. In order to carry 
out pattern linearization and to make the pattern 
classification easier, a Radial Base Function (RBF) 
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rr was used as a kernel. RBF only requires a 
parameter (σ). In this work, crossed validation technique 
and the grid search were used [9]. Parameters of penalty C 
= 2 048 and σ= 0,5 were obtained. Classification results 
appear in Table I.  
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SIMULATION RESULTS 
The scheme was tested by 200 disturbances of 5 types, 

randomly selected from the signal database. Success 
percentages are shown in Table I. Each one of 5 disturbance 
categories were sampled at 128 s/c (Fs=60*128  Hz).  

 
As shown in Table I, success percentage for Kohonen 

LVQ network is, for most of the types of disturbances, less 
than 60%. This could mean that it is not a good classifier for 
these patterns, while MLP network has 90% of success for 
most of the types of disturbances. Flicker pattern is similar 
to swell pattern; this might explain why its success 
percentage is less than 90%. 

TABLE I 
SUCCESS PERCENTAGES FOR MULTILAYER PERCEPTRON 

(MLP) AND KHONEN LVQ NEURAL NETWORKS, BAYES AND 
SUPPORT VECTOR MACHINES. 

Disturbances MLP [%] K- LVQ [%] BAYES[%] SVM [%] 

Sag 93 55 92 98 
Swell 97 56 51 98 

Flicker 86 90 85 100 
Osc.Transient 79 60 0 99 

Harmonic 95 50 0 100 
 
 Therefore, the best classification strategy is based on 

SVM with 248 Support Vectors and 96,29% training 
accuracy. SVM performance is followed by that of MLP 
ANN. MLP ANN could be improved by modifying some of 
its parameters and/or input patterns. The results above point 
out that Bayesian classifier (linear classifier) are not good to 
classify these disturbance patterns. The reason for this is 
that input data are not close to a normal distribution. Jarque 
- Bera test was applied to the data set and it resulted in 89% 
of rejection, that is, input data are not close to a normal 
distribution. 

CONCLUSIONS  
A PQ disturbance detection and identification technique 

which combines advantages of disturbances identification 
strategy based on DWT, with the advantages of the ANNs 
and SVM to classify information automatically was 
implemented.  Once the disturbance is detected, it is 
possible to locate it from the detail sequence at first 
decomposition level (Fig. 5). 

A database of 19 430 synthetic signals was generated, 
with different disturbances and different signal variations 
for training, validating and evaluating each classification 
scheme. 

The success percentage obtained in the evaluation of the 
strategy of detection, identification and classification, for 
most of the disturbances categories was better than 80% and 
90%, in spite of shifting no-invariant property of WT. 

SVM could be the best classifier for patterns obtained in 
this work. Though, ANNs (supervised) display good 
performance. Since no classifier is completely efficient 
when patterns of different disturbances are very similar, it is 
necessary to use a classification strategy that considers 
other signal parameters. 

 Bayes technique decision is not a good classifier for the 
patterns used in this work because input data are not close 
to a normal distribution. 
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