
C I R E D 19th International Conference on Electricity Distribution Vienna, 21-24 May 2007

Paper 0852

CIRED2007 Session 4 Paper No 0852 Page 1 / 4

CCOOMMMMOONN MMOODDEELLLLIINNGG IINNTTEERRFFAACCEE FFOORR UUTTIILLTTYY SSIIMMUULLAATTIIOONN TTOOOOLLSS
AANNDD AACCTTIIVVEE DDIISSTTRRIIBBUUTTIIOONN NNEETTWWOORRKKSS

Graeme Bathurst John Heath
 TNEI Services Ltd – UK TNEI Services Ltd – UK
 graeme.bathurst@tnei.co.uk john.heath@ipsa-power.com

ABSTRACT
As distribution networks become more active, utility
planners need to be able to adequately model the changing
behaviour of their networks. This paper discusses the
issues facing manufacturers, utilities and software vendors
in dealing with this changing environment. A Common
Modelling Interface is outlined that provides a structure
that allows the same model to be used in a range of
simulation platforms. Results are shown for a transient
stability implementation using the same model in two
widely used commercial available analysis programs.

INTRODUCTION

There has been considerable discussion recently of the
need to move the operation of distribution networks
towards a more active management regime, particularly to
deal with increasing levels of distributed generation. In
order to ensure the best use of these new technologies and
to allow efficient network design, it is essential that the
Utility network planners are able to simulate these new
configurations using their existing simulation tools.

As a vendor of a commercial software package IPSA+,
which is widely used within the UK distribution
community, we are faced with the interesting challenge of
providing a solution that is flexible but still easy to use, as
well as a solution that protects the IPR interests of the
various technology manufacturers.

There are a number of possible approaches that could be
utilised to achieve the desired result namely; extending
existing built-in control functions, implementing low level
scripting or control macros, or utilising an existing
software technology called a Plug-in.

Our experience as both developers and consultants has
helped us to develop an approach that enables re-use of the
same developed source code across a range of applications.

This paper gives an overview of the issues facing Utilities,
Manufacturers and analysis tool vendors with regards to
active distribution networks as well as a possible solution
for all parties called the Common Modelling Interface.

ACTIVE NETWORK ISSUES
Distribution systems are on the whole operated as passive
networks providing ‘distribution’ of power from bulk

supply points to the individual end users. With the
increasing levels of distributed generation and
requirements to push networks harder, distribution
networks are likely to become more active in nature.
Some examples of loadflow controllers that need to be
modelled for planning studies are:
• Master-slave transformer controls
• Area load or power-flow controllers
• Demand side management systems
• Generation management systems

The issue of custom devices also enters the area of fault
level (short-circuit) analysis for the modelling of devices
such as active fault current limiters and inverter fed
generation. Typical examples of where transient stability
controllers or full machine models are required are for
pitch regulated, DFIG and inverter fed wind turbines.

Electrical Utilities

Software Vendors Manufacturers

Lifetime Support
IPR protection

Many Vendors
Unknown Equipment

Ease of Use
Solution Flexibility

Electrical Utilities

Software Vendors Manufacturers

Lifetime Support
IPR protection

Many Vendors
Unknown Equipment

Ease of Use
Solution Flexibility

Figure 1 Principle parties and issues

There are three principal parties involved in the
representation of any new technology within planning
studies (Figure 1); technology manufacturers, software
vendors, and most importantly the end-user Utilities. Each
party has different requirements that must be resolved in
order to achieve an outcome that is satisfactory for all. The
following is a discussion on the development of the open-
source common modelling interface that we are proposing.

Utilities
Planning engineers need to be able to represent behaviours
that impact on loadflow, fault level and transient stability.
They often do not have specialist modelling skills in-house,
or the time required, to implement complex controllers. A
preferred approach would be the provision of documented
black boxes or otherwise prepared solutions.

C I R E D 19th International Conference on Electricity Distribution Vienna, 21-24 May 2007

Paper 0852

CIRED2007 Session 4 Paper No 0852 Page 2 / 4

Manufacturers
Technology manufacturers need to protect their IPR and
ensure that their controllers or equipment are correctly
represented. They also need to keep the amount of support
of simulation tools to a sensible economic minimum.

Analysis tool vendors
Vendors need to provide and create low maintenance,
flexible and usable solutions to their clients. It is key to
their business to enable their users to model their real
distribution networks.

EXISTING SOFTWARE TECHNOLOGIES
The issues facing power system analysis tool vendors are
not uncommon to the issues faced in the wider software
community. Catering for unknown new technology is
difficult to achieve using built-in fixed control structures,
and so a more customisable approach is required.
Specifically, there are a number of standard techniques that
can be used to inject external custom code into the core
analysis algorithms; Scripted models, Hard linked models
and Plugin models.

Scripted models
Analysis programs that provide an internal scripting or
macro language often also provide the capability to write
complete control models in this language. This enables a
high degree of model customisation in the analysis, in
particular for performing multiple simulations. The
problem with scripted languages, however, is that they are
interpreted not compiled, and are usually significantly
slower than compiled code options (even when byte-
compiled). They also do not provide any real protection of
the manufacturer's IPR as the source code is usually open.

Scripting is often best suited to the customisation of sets of
solutions rather than detailed equipment modelling within
the core of the algorithm.

Hard-linked models
A more efficient approach is to write the model in a
compiled language and link it to the core algorithm using a
set of pre-defined routines and data structures (termed an
Application Programming Interface or API) in the analysis
program. This technique also necessitates the inclusion of a
compiled-in model definition, and possibly call-backs in
the analysis program. This gets over the problems of run-
time speed, and protects the manufacturer’s IPR.

The nature of the API and definitions requires that the
model and analysis program be linked against each other
prior to run-time. This means the addition of each new
model essentially creates model specific 'custom' versions
of the analysis tool. Even though the models may be
packaged as separate libraries, e.g. as a Dynamic Link
Library (DLL) on Windows platforms, the model will only

run with the 'custom' version of analysis program. This
makes support and distribution of models difficult.

Plugin models
In widespread use in many other software applications is
the use of plugin libraries. This is a technique whereby
there is no hard-linkage between the external compiled
library and the main application. This means that the
application will run without the presence of the library
(termed the plugin). If, however, the library is found at run-
time, it is dynamically linked to the appropriate routines in
the main application, thereby extending its functionality.

This tried and tested architecture seems to be the best
solution for the requirements of simulating active networks.
It combines the flexibility of the scripted approach, with
the speed and security of hard-linked models. In fact it may
be relatively simple to re-use the code of a hard-linked
model by embedding it inside a plugin code harness.

Essentially it will allow controllers to be written externally
to the main program using a defined plugin API, compiled
into DLL's (SOs for Linux) and then linked dynamically,
on demand, by the user for the network simulation. All
that needs to be distributed for each model is a single DLL.
For manufacturers this is particularly interesting because it
protects their IPR within compiled code, but it also allows
them to be sure that their controllers have been correctly
implemented. It also allows the development of a common
code for many different analysis platforms.

A STANDARD INTERFACE
Provision of paper based models is not viewed by TNEI as
the best way forward for complex systems given the
difficulties in creating a coherent document that allows
third parties implement it correctly as they are often open
to interpretation. Recreating the same model multiple
times could be considered as wasteful of engineering time
in a world where engineers are becoming a scarce resource.

For IPSA+, the decision was made to implement the Plugin
approach as this was seen as providing the best solution
overall. Approaches similar to this have been used in a
number of other programs for user-defined models in
transient stability. However, the view was taken that to
resolve the active network simulation issues, the Plugin
needed to be extended to all aspects of simulation, i.e.
loadflow, short-circuit, transient stability, harmonics and
protection.

In the process of developing this, it was recognised that it
would be possible to develop a common model structure
capable of being used by many other simulation tools. This
Common Modelling Interface (CMI) is described in the
following.

C I R E D 19th International Conference on Electricity Distribution Vienna, 21-24 May 2007

Paper 0852

CIRED2007 Session 4 Paper No 0852 Page 3 / 4

Common Modelling Interface
The proposed Common Modelling Interface (CMI) is
designed to make the creation of control and equipment
models in vendor-neutral form very simple. It will use the
same core model code for each CMI compliant analysis
program. Each analysis program vendor will supply an
adaptor that allows the manufacturer’s CMI model to
connect directly to the vendor’s software.

There is already a lot of commonality between analysis
tools in terms of how models are specified. A common
interface can be readily defined by the combining the
common attributes and functions for each vendors model
interface. The following groups of related functions are
required:
Informational - model name, version, parameter name

and types
Parameter setting - specify the model parameters
Simulation - initial conditions, time and step length

and calculation operations
It is also necessary to define a naming convention for both
the externally visible API and the internal routine names.
This is to ensure that there are no name clashes when the
model is used in a hard-linked vendor environment.

Once a CMI model is compiled, the manufacturer has an
object file or library that can be combined with vendor
supplied adaptor code to produce a re-distributable
component for each vendor's program. The CMI adapters
would be made publicly available from the individual
software vendors so that the manufacturers can
independently produce the Plug-ins. For building and
testing only the CMI is required by the manufacturer
(Figure 2).

CMI Benefits
Some of the key benefits for the manufacturers are the
avoidance of the need to support a large number of
different simulation programs, confidence that their
controller is being correctly represented and protection of
their IPR. For the analysis program vendors, this approach
also has a significant benefits as it reduces the burden of
providing and maintaining a large number of bespoke
ancillary controllers, being able to support their end users.
For the Utilities, this approach provides a reliable means to
model a wide variety of different and new technology
controllers and equipment. It means that they do not have
to source specialist modelling expertise and they can be
sure that the controllers or equipment have been tested and
validated.

Key Requirements
There is a wide range of different analysis programs and
methodologies, which each have their own advantages. For
the implementation of CMI models, the following core
functionality is required:
• Core code commonality between programs

• IPR protection for manufacturers
• Validity guarantees
• Documented black boxes
In addition, for Utility confidence, it is important that there
is adequate documentation on the functionality of the
“black-box” along with validation results. In general,
Utilities do not like hidden surprises or un-explained
behaviour within models.

For confidence of lifetime support and general portability,
it may be necessary to place the core function code in
ESCROW. This will ensure that Utilities are not left with
un-maintainable or non-portable black-boxes in their
analysis programs in the event of an equipment
manufacturer or software vendor going out of business. An
ESCROW for software is a legal arrangement where the
source code is deposited with a nominated third party. The
ESCROW agreement allows the release of the source code
to the user in the event that the manufacturer goes out of
business or fails to maintain support.

Analysis
Program 1

Controller
Function Code

Program 1 Adapter

Analysis
Program 2

Program 2 Adapter

Compiled
Plug-in for
Program 1

Program
Specific
Interface

Compiled
Plug-in for
Program 2

Common Modelling
Interface

Program
Specific
Interface

Analysis
Program 1

Controller
Function Code

Program 1 Adapter

Analysis
Program 2

Program 2 Adapter

Compiled
Plug-in for
Program 1

Program
Specific
Interface

Compiled
Plug-in for
Program 2

Common Modelling
Interface

Program
Specific
Interface

Figure 2 General Plug-in structure

Loadflow Interface
The loadflow interface requires the following functions:
• Set model parameters
• Initialisation from flat or previous solution
• Set busbar type
• Set convergence control tolerances
• Set present iteration inputs such as voltages, currents or

other required solution variables
• Set present iteration sensitivities (if required)
• Calculate Jacobian entry
• Calculate & get new output variables
• Get internal variables
The loadflow implementations are likely to be more
complex than the transient stability implementations as
they are a part of the solution of a non-linear set of
equations. In the short-term it is likely that external
controllers will be implemented as ancillary equations
around the primary iteration with possible variable inputs
to some of the primary loadflow controls. Again though,
these options should be left to the individual analysis

C I R E D 19th International Conference on Electricity Distribution Vienna, 21-24 May 2007

Paper 0852

CIRED2007 Session 4 Paper No 0852 Page 4 / 4

program vendors who are in the best position to make such
decisions about implementation in their programs.

Fault level Interface
The fault level interface is more difficult to define given
the wide range of short-circuit methodologies and non-
linear equipment responses. The fault level interface
requires the following functions:
• Set model parameters
• Set fault type & duration
• Set external impedance (if required)
• Get equivalent impedance

Transient Stability Interface
The transient stability interface requires the following
functions:
• Set model parameters
• Initialisation from loadflow solution
• Set solution time and time-step
• Set present time inputs such as voltages and currents
• Calculate & get state variable derivatives
• Calculate & get new algebraic variables
• Set state variables
The program specific API then performs the linking
between the simple derivative and algebraic calculations
and the particular integration and time-stepping behaviour
of the specific analysis program.

IMPLEMENTATION
The CMI approach has been tested and proven for transient
stability analysis of wind turbine models. A common
model code for transient stability simulation was created
for one of the major wind turbine manufacturers. This
code was validated against their detailed simulation and
measurement results.

Two CMI adapters were created to link this code to two
commercially available and widely used analysis programs;
IPSA+ and PSS/e. The compiled form of the model for
IPSA+ comprises of a DLL based Plug-in technology. The
compiled form of the model for PSS/e comprises of two
object (obj) files that form part of the hard-linked
DSUSR.DLL file.

The complexities of the individual implementations are all
managed within the program specific adapter. Once this
has been created, it is then a simple matter of combining
with the custom manufacturer code. Provided that the
interface is correctly defined, the manufacturer or analysis
program source code does not have to be a specific
language.

This test showed quite successfully that the common model
approach works with two quite different implementations
of the same style of analysis without any significant
increase in computational burden. For example, IPSA+

uses a variable time-step trapezoidal integration, whereas
PSS/e uses a fixed time-step 2nd order Euler integration.
Figures 3 and 4 show the active power responses of a
DFIG wind turbine riding through a network fault in
IPSA+ and PSS/e respectively. This is a CMI based model
with the same core source code.

Figure 3 Illustrative MW response of a CMI based
DFIG wind turbine model in IPSA

Figure 4 Illustrative MW response of a CMI based
DFIG wind turbine model in PSSE

SUMMARY
A key requirement for any significant uptake of the much-
discussed active distribution networks is the ability of
Utilities to incorporate these controls within their network
planning analysis. This paper is proposing a Common
Modelling Interface approach as a possible way to
minimise a number of the key issues facing the Utilities,
Manufactures and Analysis program vendors.

It has been shown that it is possible to develop CMI based
models that can be used with a range of power system
analysis tools. The full implementation will require an
industry standard to be developed for the CMI. It will also
require the analysis tool vendors to open access to their
analysis cores via appropriate CMI adaptors.

