PERFORMANCE ANALYSIS OF MEDIUM VOLTAGE OVERHEAD DISTRIBUTION LINE AGAINST LIGHTNING

Marco SARAN
Federal University of Itajubá – Brazil
marco@msaran.com

Manuel MARTINEZ
Federal University of Itajubá - Brazil
martinez@lat-efei.org.br

Hermes DE OLIVEIRA
AES SUL - Brazil
hermes.oliveira@aes.com

Carlo NUCCI
University of Bologna – Italy
carloalberto.nucci@unibo.it

Mario PAOLONE
University of Bologna – Italy
mario.paolone@unibo.it

ABSTRACT
The aim of this paper is to present the results of the performance study of medium voltage overhead distribution lines against lightning discharges, in the way to define methodologies to reduce the system failures. The results are obtained within the partnership among the High Voltage Laboratory of the Federal University of Itajubá, AES Sul Utility Company and the University of Bologna. Direct discharges and induced surges were simulated into real networks to identify the major factor of influence for network failures. Then commentaries on the relative performance and comparisons of different construction configurations of overhead lines are presented.

INTRODUCTION
The standard medium voltage distribution network are subjected to incidence of direct lightning discharges and induced surges, that are one of the main causes of interruptions and failures of the lines. The majority of the damages to the distribution network are caused by direct discharges, its destructive effects frequently extends to equipments and connected installations, with the possibility to cause personal injuries and material damages, beyond economic losses, due to out of income and the possibility of indemnities, penalties and fines. However, they can be deviated by tall structures, such as towers, buildings, high constructions, and trees. Even when the lightning does not intercept the network, they induce surges that travel throughout the lines. These surges are able to cause many damages and interruptions to the distribution network.

Some actions were been taken by the utilities for the prevention and minimization of the damages associated to the lightning discharges. However, as the lightning discharges are random events, consequently, difficult to predict, the majority of these actions does not follow a study or a detailed analysis of the problem.

By this way, in the majority of the cases the actions were taken based on the knowledge of the engineer in charge, or based in rules defined without any effective evidence, by means of studies or by laboratory tests. As a result, many of them besides of presenting high cost are not effective. Among others, the distribution network reliability depends directly on its exposition to the lightning discharges. The topology of the distribution network is the major factor of influence for analysis [1], and its density and distribution results in a greater or minor probability of incidence of direct lightning discharges. Once that the atmospheric discharges phenomena are random, this work considers that the parameter generation of the discharges follows the statistical data proposed by Anderson and Eriksson. The Monte Carlo Method is used for the incidence distribution of the discharges and the Electro Geometrical Model for the interception point of the discharge.

DIRECT DISCHARGE AND INDUCED LIGHTNING SURGE
When 100 years of lightning discharges are simulated into a real urban distribution network, a low number of direct discharges intercept the network [1], mainly when the circuits are naturally shielded by tall structures, like buildings, towers, and trees. Between 2% to 16% of the lightning reaches directly the urban distribution network.

In complementary way, the amplitude of the average discharge currents that intercept the network stays between 12 and 23 kA. The majority of direct discharge currents stay below 40 kA at urban systems, with 10% of probability of being surpassed. Based on the median current intensities, it is possible to affirm that direct discharges intercepting the network results in dielectric failure of the system, and in the failure of not properly protected transformers. As a result, the main factor of study for the performance improvement of urban distribution systems, front lightning, is induced surges. For this reason, this paper is focused on the assessment of the indirect-lightning performance of an AES 25 kV class standard medium voltage distribution line (see Fig. 1).
CALCULATION OF THE INDIRECT-LIGHTNING PERFORMANCE OF DISTRIBUTION LINES

The lightning performance of medium voltage overhead lines performed by means of statistical methods is based on the calculation of the flashover risk [3]. This last can be estimated when both overvoltage statistical distribution and insulation strength are known.

The analysis of the distribution networks response against Lightning Electro Magnetic Pulse (LEMP) requires the availability of accurate models of LEMP-illuminated lines. These should be able to reproduce the real and complex configuration of distribution systems including the presence of shielding wires and their groundings, as well as, surge arresters and distribution transformers. In addition to the accurate modelling of the overhead lines, the development of models of the entire distribution networks is clearly necessary. This should allow, in principle, to optimize the number and location of protective devices and then to minimize the number of outages.

The statistical procedure used to infer the indirect lightning performance of the AES 25 kV class overhead distribution line is based on the calculation of lightning induced overvoltages by means of the models implemented in the LIOV code [5-8] and on the Monte Carlo method. The LIOV code allows for the calculation of lightning-induced overvoltages along a multiconductor overhead line as a function of lightning current waveshape (amplitude, front steepness, and duration), return stroke velocity, line geometry (height, length, number and position of conductors), values of termination impedance, ground resistivity, and relative permittivity.

In particular, the LIOV code is based on the field-to-transmission line coupling formulation of Agrawal et al. [5] suitably adapted for the case of an overhead line above a lossy ground. The equations are numerically solved by a finite difference time domain (FTDT) approach [5, 9]. The lateral attractive distance expression adopted by the IEEE Working Group on Lightning performance of transmission lines is used to distinguish direct from indirect lightning events [3], only the latter being considered in this study.

The adopted parameters of the current peak and its front time lognormal statistical distributions are those proposed by Anderson and Eriksson [10], with a correlation coefficient equal to 0.47 [11]. These statistical distributions have been obtained by using experimental records collected by elevated structures.

GEOMETRY OF SIMULATIONS

All the simulations described in this paper refer to a 2 km line length with a distance between two subsequent poles equal to 100 m. The line conductor’s geometry is one of the patterns adopted by AES Sul, where the grounded conductor corresponds to the neutral conductor shown in

SIMULATION RESULTS

Different line configurations, based on the same standard 2 km line structure, were considered. The cases differ form each other by the soil conductivity, grounding resistance, number, position of surge arresters, and grounding points.
and, finally, line boundary conditions.

Due to the predominant common mode coupling between LEMP and multiconductor lines, and to the identical height of the different line conductors, the number of events exceeding the BIL is practically the same for each phase. As a result, in a first approximation the calculations could be carried out for one phase only.

Laboratory tests have demonstrated that there is no effective dielectric improvement with the utilization of wood cross arms [15].

The results of Fig. 3 show that equivalent line configurations can be obtained. For instance, for system insulators having a BIL of 100 kV, the line configuration with surge arresters installed each 400 m has a performance close to the line configuration with a grounded conductor each 100 m.

Figure 3 can be used to support the selection of the appropriate line configuration. In order to provide an example, let assume as an acceptable risk level the value of 4 failures per 100 km per year, from Fig. 3 it is possible to select the equivalent configurations, as shown in Fig. 4.

As a consequence of Fig. 3, it can be observed that the increase of the system insulator’s BIL results in a simplification of the line configuration with particular reference to the adopted protection systems.

Figures 3 and 5 show that the solutions involving the use of insulators with BIL greater than 200kV presents, as expected, reduction of flashover risks by induced surges. In these cases, even the most complex constructions, as the one that involves the use of surge arresters at each 200 meters and grounded cable, do not present significant differences related to the standard case, without surge arresters nor grounded wires.

Based in Fig. 4, a construction cost comparison of the different alternatives can be made for the possible solutions, leading to the Table 1.

Table 1 shows that the simpler construction, only involving the standard 3 conductors, and without surge arresters nor grounded cable, but with insulator’s BIL equal or above 170 kV, has the same performance as other cases but with the smaller construction cost.

CONCLUSIONS

The analysis has covered the influence of the presence of surge arresters, of their spacing, of grounded wires and of the spacing of the relevant grounding points on the indirect
lightning performance of a typical AES 25 kV distribution line. Surge arresters removed from AES Sul distribution networks, and analyzed in laboratory, shows, in preliminary results, that 66.4% of it have being hit by a lightning current inferior than 20 kA, from 372 surge-arrester’s analyzed. Confirming the median value of 23 kA obtained in the simulations.

When an acceptable flashover risk is established, it is possible with the aid of some charts to choose the appropriate line configurations and to associate them with installation and maintenance costs. This is based on the assumption that the distribution system configuration can be described adequately as a single conductor overhead line allowing taking decisions that capture important economic and technical aspects. As demonstrated, the surge arresters installation to each 400 meters is not an efficient solution, mainly when compared with solutions where the insulators BIL are greater than 170kV.

In this way, systems where the insulators BIL are lower than 125kV and protected by surge arresters each 400 meters, presents greater flashover risk than the systems constructed without surge arresters and with insulators BIL above 170kV. As a first result of this study, the solution for 3-conductors construction line without surge arresters nor grounded wire and BIL larger than 200 kV seems a valid alternative worth of additional studies. This alternative presents economic potential, as much for equipments as for hardware, however with a bigger cost with regard to the standard insulators.

REFERENCES

