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ABSTRACT 
Present energy market dynamics seriously affects data 
stationarity.  Similar situation followed the 2001 Brazilian 
energy shortage, producing strong modifications in load 
dynamics. In this case, new history corresponds to a 
reduced period – a few years - leaving insufficient amount 
of data to be explored by classic models, from statistical to 
neural networks. This paper addresses this problem – 
modeling under lack of data – and proposes a new method 
based on Functional Analysis, applied as a sequential 
procedure. A real case-study enlightens the approach 
advantages. 

INTRODUCTION 
Modern energy markets exhibit a nervous behavior, 
reflecting present world’s political and industrial 
instabilities. Load models are essential for energy trading 
but, even under today world’s instabilities, most of them are 
still based on statistical analysis, using large utility data 
banks. Naturally, during the period of data collection, the 
electrical market is supposed stable – in other words, the 
data processes are stationary. This presumed situation may 
be invalid due to the energy market dynamics, or to local 
causes, as recently occurred in Brazil. 
The Brazilian power market is strongly dependent on 
hydroelectric energy and became particularly vulnerable 
during the Brazilian 2000-2001 drought. Water reservoirs 
came to as low as 20% of their full capacities, requiring 
extreme limitations on the use of energy. A severe shortage 
was implemented, leading to a mandatory 20% linear load 
reduction to all consumers (residential, commercial and 
industrial). Many industries modified their energy 
consumption profile, adapting to the use of other available 
energy sources, as solar, gas or oil. The society as a whole 
minimized consumption by the use of low energy electronic 
lamps, sun heating, etc, sometimes disconnecting 
unnecessary and even necessary electrical loads. Penalties 
for excess energy consumption were severe, but successful 
reduction was rewarded by credits for future energy bills. 
The shortage extended from May 2001 to January 2002, but 
the corresponding fall in the electrical energy market still 
persists. It may be observed in Fig.1 the slow load recovery 
after the 2001 sharp down transition. Of course, many 
changes to alternative energy sources are definitive, but it 
looks like it is more than this. 
 

Actually, the average Brazilian worker income was already 
suffering a substantial reduction before the energy crisis 
started. The energy crisis taught him how to manage and 
control his electrical energy bill, partly compensating his 
income losses. Besides the permanent modifications on 
energy sources, the society electrical energy consuming 
habits were modified, producing a clear and probably 
permanent change on load consumption dynamics.   
Fig. 1 displays the load curve of Elektro (Brazilian utility, 
responsible for supplying part of S. Paulo State) – 
normalized, for better visualization. Load dynamics 
dramatically changes after the 2001 drop, and new 
consumption pattern seems differ from the old one. The 
energy market during 2002 is visually still adapting and 
only from 2003 on it looks as “almost” stabilizing.  
 

 
Figure 1 – Elektro Total Load 

 

This leads to insufficient amount of data in order to work 
statistically. Conventional statistical methods or even neural 
networks, as [6-8], require large volumes of data that will 
not be available for a while. Attempts to use the pre 2001 
data to statistically analyze the present market will take into 
account an obsolete past and possibly lead to poor results.  
In spite of all difficulties, new market rules bring a new 
challenge: distribution utilities must cover 97% of their load 
with long-term contracts (or suffer a huge penalty). The 
Long Term Load Forecast problem has never been more 
difficult, critical and important to solve.  
This paper presents a functional analysis approach, 
originally applied in signal theory, customized to this 
problem. We focus the Load Decomposition by different 
“explaining variables”, describing load behavior and 
dynamics. The load consumption synthesis is addressed at 
the end of the work. 
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SOME FUNCTIONAL ANALYSIS RESULTS 
Functional Analysis [1-3] underlies many optimization 
procedures. Sometimes it is statistically based, as in many 
communication problems [1], but it may be also used 
deterministically [1-3], associated to specific Hilbert 
Spaces. 

Hilbert Space 
It is common practice to refer to the members of the Hilbert 
Space to be studied as vectors, disregarding the fact that 
they are, as in this case, data sequences, such as loads, 
temperatures, economic indexes, etc. 
A Hilbert Space is a complete metric space [1-3], composed 
by reasonably smooth data sequence vectors, here 
represented by capital bold fonts as V. In the considered 
Hilbert Space: 

 the distance d[V1, V2] = ||V1- V2||, is a nonnegative 
real number, where || . || stands for the vector 
norm, 

 the vector inner product (V1, V2) = V1
tV2 induces 

the vector norm, sqrt(V1
tV2), the Euclidean norm 

[1-3]. 
The vector norm may be understood as a measure 
(functional) of the vector size, while the distance between 
vectors is the size of their difference. 
This ideal “Load Hilbert Space” does not actually exist for 
the load problem. The completeness of the ideal space 
would always require zero residue for any load 
decomposition scheme, an unpractical situation. A “close 
enough” engineering criterion avoids the complete metric 
space requirement, still preserving the desired load 
decomposition properties. 
Schwarz inequality [1-3] states that 1 2 1 2|( , )| || ||.|| ||≤V V V V , or 
equivalently for a real vector space, as in this case, 

1 2

1 2

( , )
cos

|| ||.|| ||
θ =

V V
V V

,            (1) 

where θ is the angle between vectors V1 and V2. 
Hilbert Space optimum solution satisfies the Projection 
Theorem or, equivalently, the Orthogonality Principle, a 
geometric interpretation for the optimality condition. 

Projection Theorem  
If one looks for the optimum approximation of a desired 
vector, Vd by a set of other space basis vectors, the 
Projection Theorem states that the error vector is orthogonal 
to the space determined by the basis vectors, meaning Eq.1 
results in a zero cosine for the error vector and any other 
space vector. 

 
Figure 2 – Projection Theorem Representation 

This is represented in Fig.2, where Vd is optimally 
approximated by Vo, a vector belonging to the Vector 
Space. The error vector E is shown orthogonal to the basis 
vector space. In our case the initial desired vector is the 
sequence of loads and the basis vectors are originated from 
economic, climate and demographic series, etc. 

LOAD DECOMPOSITION 
Optimum load decomposition follows directly from the 
Projection Theorem if the basis vectors are known 
beforehand, as in classical communications with sinusoids 
or in modern spread spectrum techniques as in CDMA 
systems [1,4,5]. In this case, however, the basis sequences 
still must be found and they may vary from utility to utility. 
Attending to this fact, we will follow an equivalent alternate 
procedure, sequentially removing the component due to 
each of the basis vectors. This approach is equivalent to the 
originally exposed, but will show better to visually estimate 
the process evolution and helps finding the basis sequences. 
The Sequential Algorithm may be described as 

1. Iteration i = 1 
2. Select a desired vector, Vdi. 
3. Select a basis vector, Vbi. 
4. Determine the optimum projection, Voi. 
5. Determine the error vector, Ei. 
6. If || Ei || too large; Vdi+1= Ei; i=i+1; return to 3. 

The decomposition is accomplished after a few iterations 
and by proper selection of basis vectors. Notice item 6 
contains the previously mentioned “close enough” 
engineering criterion. 

CASE STUDY  
The proposed procedure will be illustrated by the Elektro 
case study. The monthly load to be decomposed is shown in 
Fig.3 (mean value removed and normalized with respect to 
medium value). 
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Figure 3 – Elektro Monthly Load and Compensated Effective Load 

Care should be taken when examining the monthly values.  
For instance, February loads are usually lower than those of 
January, but this could be due to the reduced number of 
days rather than to consumption reduction. Actually, load 
pattern depends if it is Sunday, Saturday, or a Holiday. In 
this last case depends also on its weekday occurrence. 
These characteristics were modeled by transforming the 
Monthly Load curve into a Compensated Effective load 
curve where each day is weightened according to its share 
in total consumption (in this case, for instance, Holidays 
and Sundays account for 60% of a weekday). 
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The difference between Monthly and Effective load may be 
observed in Fig. 3 – February “valleys”, for instance, are 
now corrected. We will focus therefore on the Compensated 
Load and take it as, Vd, the actual starting point of the 
process. 
According to the Sequential Algorithm; i=1, Vd1<= 
Effective Load. Next step is choosing the first basis vector. 
The first component (basis vector) to be removed from the 
Effective Load curve, Vb1, is the economic influence. It is 
shown in [9] that, although load elasticity with respect to 
prices or incomes is very high, there is still a significant 
influence from the Brazilian National Internal Gross 
Product, as may be seen in Figure 4 normalized plots. 

  
Fig. 4 – Normalized Compensated Load (green) and Brazilian GIP 

(blue) 
 

The next step in the proposed algorithm is to apply the 
Projection Theorem, determining the cos θ1   between both 
vectors; Vd1.and Vb1. This follows immediately from Eq. (1), 
a consequence of Schwartz Inequality. 
In the sequence, the projected optimum vector, i=1, 
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is removed from Vdi in order to yield the error vector Ei 
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Fig. 5 displays the normalized curves of Elektro Load and 
the error after removal of the GIP projection. The removed 
component energy totals 87% of the original load, as 
indicated in Fig.4. 

 
Figure 5 – Elektro Load (blue) and first Error Vector (red) 

As the i=1 error is not negligible, one follows the Sequential 
Algorithm by updating the desired vector with the previous 
error vector or residue of the operation, Vd2= E1 and the 
index i=i+1=2. A new explanation vector (basis vector) is 
chosen and the procedure is repeated. 
The next explanation sequence comes from climate: we will 
now take the monthly averages of maximum temperatures 

in the utility’s area.  
As Elektro facilities spread over a large area, we took, for 
this example, temperature “geographical” mean values. 
Further studies, focusing specific regions, could yield even 
more precise results. Fig. 6 displays the normalized new 
desired vector superposed to the normalized explanation 
temperature vector. 

 
Figure 6 – Error 1 Load (blue) and Temperature Vector (green) 

The new projection energy is, as indicated, 76% of the first 
error energy, representing the actual load levels indicated in 
Fig.7. 

 
Figure 7 – Error 1Load (blue) and Error 2Vector (red) 

One observes that although achieving a strongly reduced 
residue at this point, the error curve indicates the presence 
of seasonality. One could proceed with the method, trying 
to further reduce the decomposition residue, however, due 
to its reduced energy we preferred just remove its monthly 
average in the period as a deterministic component 
(similarly to many statistically based methods). This yearly 
average load is shown in Fig.8, while Fig.9 indicates it 
represents 70% of Error 2 energy in the period. 

 
Figure 8 – Error 2Load Yearly Average 

  
Figure 9 – Error 2Load (blue) and Error 2Yearly Average (green) 
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The final comparison is made in Fig.10 between the original 
Elektro and the Error 3 loads. 
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Figure 10 – Elektro Load (red) and Error 3 (blue). 

LOAD FORECASTING 
Since from the analysis stage resulted a decomposition in 
terms of explaining variables basis vectors, the synthesis 
procedure relays on the future load reconstruction based on 
the same linear combination, but with forecasted basis 
vectors. This approach is applied for the Elektro case, 
requiring the forecasting of the Brazilian GIP and of the 
average S.Paulo temperatures.  
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Fig.11 – Predicted and Verified Loads (upper), Percent Errors (lower) 

As with neural networks, we consider the derived 
decomposition as a train and will apply the method from 
January to September 2006. The results are displayed in 
Fig.11 for the loads and respective percentual errors. 

CONCLUSIONS 
The 2001 draught severely affected the Brazilian energy 
market, modifying energy consumption habits and market 
characteristics. As a result, the use of pre-2001/2 data is 
unsafe, leading classical and modern statistical approaches 
to unacceptable solutions. The new market does not have 
enough data to permit correct statistical modeling. 
 

The aim of this paper is as the first step to a completely 
novel Load Forecasting model, able to work under lack of 
data. This work focuses on the analysis and detection of its 
explaining short term variables. Load projection is a 
straightforward step, based on the achieved results. This 
deterministic type of approach is based on Functional 
Analysis theory. The Projection Theorem is valid for 
different Hilbert Spaces, including our deterministic 
situation. For such a space, a Sequential Algorithm is 
presented, equivalent to the classic Projection Theorem, but 
allowing the test of all possible explanation sequences, or 
basis vectors. 
In the included case study, the Elektro load is almost 
entirely explained by the Brazilian GIP, temperature mean 
value and  a reduced seasonal component. The synthesis 
stage was tested for a nine month period with almost 
negligible errors. It is interesting to observe that, although 
the functional approach is common to the solution process, 
the employed explanation variables differ from utility to 
utility, according to their operational regions. The basis 
vectors do depend on the nature of the load, but the 
algorithm is general. 
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