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ABSTRACT 
It is presented an algorithm for the allocation, sizing and 
operation of generators in radial distribution systems in 
order to maximize the reduction on the load supply costs. 
The generators operation is given by their operational 
schedules for all feeder load levels. Evolutionary 
programming is used as the optimization technique. The 
method was evaluated using a feeder with high losses index 
and the proposed distributed generation scheme provided a 
reduction on total costs. 

NOMENCLATURE 

)( acqope
ii GG CC  i-th bus generator operational (acquisition) 

costs, $/MWh ($) 
cP (cQ) Active (reactive) generation index 
CS Substation energy tariff, $ 

)( A
T

B
T CC  Total load supply costs before (after) the 

generators installation, $ 
dfk k-th segmented curve level demand factor 
∆tk k-th segmented curve level duration, h 
lv Relative voltage variation tolerance, % 
λv Cost conversion factor, $ 
nc Number of characteristics of the individual 
nd Number of days of the study horizon time 

max
gn  Maximum number of generators 

nl Number of levels of the segmented curve 
nP (nQ) Number of divisions of the active (reactive) 

generation power interval 
)( maxmin

ii GG pfpf  Minimum (maximum) i-th bus generator 
power factor 

pfLi i-th bus load power factor  
nom

iGP  i-th bus generator nominal active power, MW 
PGik (QGik) i-th bus active (reactive) generation power at 

the k-th segmented curve level, MW (Mvar) 
Pik (Qik) i-th branch active (reactive) flow, MW (Mvar) 
PLik (QLik) i-th bus active (reactive) load at the k-th  
 segmented curve level, MW (Mvar) 

)( A
S

B
S kk

PP  Active power coming from the substation at 
the k-th segmented curve level before (after) 
the generators installation, MW 

Pv Value proportional to the voltage variation 
limits violations at all generation buses during 
all segmented curve levels 

)( maxmin
ikik GG QQ  Minimum (maximum) i-th bus generator 

reactive power at the k-th segmented curve 
level, Mvar 

Ri (Xi) i-th branch resistance (reactance), Ω 
nom
iS  i-th bus installed nominal power, MVA 

)( A
ik

B
ik VV  i-th bus voltage magnitude at the k-th 

segmented curve level before (after) the 
generators installation, kV 

ΩG Set of generation buses 
ξik Penalty for voltage variation limits violation 

for the i-th bus generator at the k-th 
segmented curve level 

INTRODUCTION 
Distributed generation (DG) can be defined as an electrical 
power source connected directly to the distribution network 
or on the consumer side of the meter [1]. The optimal 
placement and sizing of generators on distribution networks 
has been continuously studied in order to achieve different 
aims. The objective can be the minimization of the active 
losses of the feeder [2], [3]; or the minimization of the total 
network supply costs, which includes generators operation 
and losses compensation [4], [5]; or even the best utilization 
of the available generation capacity [6]. 
As a contribution to the methodology for DG economical 
analysis, it is presented an algorithm for the allocation and 
sizing of generators in distribution networks, in order to 
minimize the load supply costs. Evolutionary programming 
technique has been used as the optimization method. 

DISTRIBUTED GENERATION 
With distributed generation, utilities are able to delay higher 
infra-structure investments and can also diversify their 
energy sources. This sort of investment can also provide 
reduction on losses and voltage profile improvement, while 
alleviates substation overload at peak demand hours. 
Nevertheless, DG may cause some disturbs to the system, 
such as: possible power quality deterioration, voltage 
regulation modifications, and need for protection system 
rearrangement. 
Due to the importance of allocation, utilities are interested 
in methods which allow them to evaluate the impact of 
generating power in some points of their feeders. In load 
flux problems for distribution systems with generators, the 
generation buses can be modeled as PV, PQ or PX buses. 
Depending on the capacity of the generators relatively to the 
network dimensions, they may not be properly modeled as 
PV buses, as they may not be robust enough to control 
voltage levels. When using PQ model, the generator is 
considered a negative load, which is more adequate when 
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modeling synchronous machines [7]. Asynchronous 
generators are more properly modeled as a PX bus, 
represented by an active generated power and a linear or 
non-linear reactance [8].  

EVOLUTIONARY PROGRAMMING 
Evolutionary algorithms are efficient methods used to solve 
optimization problems, for which the search for the optimal 
solution is based on the evolution theory. They can be 
divided in three groups: genetic algorithms, evolutionary 
strategies and evolutionary programming. As some others 
heuristic techniques used to solve combinatorial 
optimization problems, the evolutionary algorithms do not 
guarantee that the best solution founded is the global 
optimal of the problem; however, it is quite likely that the 
best solution is a good approximation of that optimal. 
Evolutionary programming is an emulation of the evolution 
process of a population of individuals along a number of 
generations. In this population, each individual represents 
one possible solution of the optimization problem. In 
general, there are four steps that should be followed to 
create an evolutionary programming algorithm [9]: 
determine the solution codification; create the initial 
population; define the combination rule; and define the 
selection rule. The algorithm is iterative and the most used 
stopping criterion is the maximum number of generations. 
The combination rule generates new individuals from others 
already existent, what allows the exploration of new regions 
of the search space. The selection rule is used to determine 
which individuals of a generation will pass to the next one, 
by a comparison of their fitness values. The fitness of an 
individual is defined as the objective function value for the 
solution codified in it. 

PROBLEM FORMULATION 
The allocation and sizing of generators in distribution 
systems is faced with the aim of minimizing the supply 
costs, i.e., the total costs paid by the utility in order to 
supply the feeder loads. Two scenarios are compared: 

1) the energy that supplies the feeder (loads and losses) 
comes uniquely from the substation; 

2) the energy has two origins: the substation and the 
installed generators. 

The energy provided by DG, being more expensive than 
that provided by large central generators, will only be worth 
if the allocation and sizing of the generation units leads to a 
significant reduction on feeder losses. 
The active and reactive powers generated by each unit must 
be located into its operational limits. Another constraint is 
that the units operation must not cause significant changes 
on the voltage levels previously existent. The maximum 
number of generators to be installed is previously defined.  
One problem solution must contain the position, nominal 
capacity and operational schedule for each generator to be 
installed. The generator operational schedule indicates the 
active and reactive powers that should be generated by each 

unit at different feeder load levels. The supply costs of the 
proposed DG scenario will be compared to the present one, 
which does not contemplates DG. The optimal solution is 
the one for which the costs reduction is maximum. 

SOLUTION METHOD 

Load and Feeder Models 
The distribution feeder model adopted is shown in Figure 1, 
as suggested in [10], which allows the installation of loads 
and generation in all buses. Each branch has the following 
properties: origin bus, destiny bus, impedance per length 
unit, length, apparent power installed, and load power 
factor. The load model is the constant power one. 
It is used the modified power summation method proposed 
in [10] for the power flow calculation. There can be a load 
(PLik+jQLik) and a power generation (PGik+jQGik) at any bus. 
The substation is the feeder swing bus, while all the others, 
including those where generators are found, are PQ buses. 
The load daily variation is considered by the use of the 
segmented load duration curve, as defined in [11]. This 
curve is characterized by some feeder power demand levels 
and by their respective duration. The ratio between the 
demand level of the curve and the total apparent power 
installed in the feeder results in the demand factor of each 
level. A unitary diversity factor is considered if there is not 
more information about the feeder loads behavior. Thus, the 
substation demand factor is applied to all buses to determine 
their active and reactive loads: 
 

iik LkiL pfdfSP nom=  (1) 
and 
 ))(arccos(sinnom

iik LkiL pfdfSQ = . (2) 

Generator Model 
Each generator is considered a negative constant load. The 
reactive power generated by the unit installed at the i-th bus 
at the k-th segmented curve level must be such that: 
 maxmin

ikikik GGG QQQ ≤≤ ,  (3) 
where 
 ))(arccos(tg. maxmin

iikik GGG pfPQ =  (4) 
and 
 ))(arccos(tg. minmax

iikik GGG pfPQ = .  (5) 
In order to match the discrete nature of the chosen 
optimization method, the possible generation intervals are 

 
Figure 1. i-th feeder branch model 
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divided into discrete levels, as shown in Figure 2. Thus, the 
active and reactive generated powers are: 

 
P
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=  (6) 

and 
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The numbers nP and nQ are previously defined integers used 
to divide the possible generation intervals into discrete 
values. The numbers cP and cQ are integers between 0 and 
nP and between 0 and nQ, respectively. 

Solution Codification 
The individual must contain the following information: 
installation bus, generator type and active and reactive 
generation indexes for all segmented curve levels. A type is 
a set of data that characterizes each kind of generator 
available to be installed. These information are repeated in 
the individual for each generator to be installed. 
An example of individual is presented in Figure 3, when the 
segmented curve has three levels and there are up to two 
generators to be installed. As indicated in the figure, the cP 
and the cQ values of each segmented curve level are 
considered an unique characteristic of the individual. 

Fitness Function 
The fitness of each individual is determined by the 
reduction on the supply costs considering the DG 
configuration codified in it. The fitness function is: 
 vv

A
T

B
T PCCf λ−−= . (8) 

The first term, which represents the load supply costs before 
the generators installation, is expressed by: 
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The supply costs after the generators allocation, 
corresponding to the second term of (8), is given by: 
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The last term of (8) is a penalty function that is applied to 
those solutions in which generators operation makes the 
generation buses voltages exceed the specified variation 
tolerance, for every load level. In this term, Pv is: 

 ∑∑
= Ω∈
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1

ξ ,   (11) 

where ξik can be given by: 
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Evolutionary Programming Steps 
The stopping criterion in this work is the number of 
generations, and the population size is kept constant in the 
end of each generation. Next, each step of the evolutionary 
programming technique is described, as schematized in the 
diagram of Figure 4. 
Initial population creation. The characteristics of each 
individual of the initial population are chosen randomly, but 
always from the possible interval, what avoids ill-formed 
individuals. The active and reactive powers generated in 
each segmented curve level are proportional to its loading 
situation, i.e., they are interdependent characteristics. 
Combination stage. Mutation was the combination operator 
used. One randomly selected individual generates another 
by randomly substituting one of its characteristics value by 
other that belongs to the set of possible options. 
Selection stage. The selection scheme adopted was the 
competition. To each individual of the increased population 
is associated its fitness. Then, each individual competes 
with randomly chosen opponents, by a simple comparison 
of their fitness. In the end, those with the greater number of 
victories are selected to pass to the next generation. 
Statistics. In the end of each generation, three indexes are 
stored: the smaller and the greater fitness values founded, 
besides its medium value among the individuals. 

EXAMPLE CASE 
In order to evaluate its performance and efficiency, the 
proposed method was applied to a feeder with high losses 

 
Figure 2. Active and reactive generated powers intervals 

 
Figure 3. Example of individual 
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index, a situation in which DG becomes an attractive option 
to reduce the load supply costs. The chosen feeder is part of 
the distribution system of a Brazilian utility. In Table 1 
there are some information about this feeder. The horizon 
time considered for the evaluation of the proposed DG 
scenarios is five years. It is admitted that it will be installed 
up to two generators in the feeder, among the five types 
whose characteristics are presented in Table 2. Those data 
are from hypothetic machines.  
In Table 3 are presented the evolutionary programming and 
the objective function parameters. The best individual 
founded by the algorithm suggests the solution shown in 
Table 4 and in Table 5 it is presented a comparison between 
some feeder indexes, before and after the generators 
installation. The optimal allocation of the units provided a 
reduction of about $ 242.000 on the supply costs during the 
five years. As required, the generators operation did not 
violate the voltage variation limits at the generation buses in 
none load level. 

CONCLUSIONS 
The proposed method for distributed generation economical 
analysis has shown good efficiency. Its applicability has 
been tested in a feeder with high losses index. The 
generators allocation and sizing proposed by the algorithm 
could reduce the total load supply costs, in spite of 
generators installation costs and their more expensive 
energy price. In addition, the evolutionary programming 
technique was adequate to solve the problem in the way it 
was formulated.  
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Figure 4.  Evolutionary programming diagram 

Table 4. Best solution founded 

Characteristics Generator 1 Generator 2 
Bus 128 116 
Type 4 4 

(MW) 0,60 0,60 Peak (Mvar) 0,45 0,45 
(MW) 0,60 0,60 Medium (Mvar) 0,45 0,45 
(MW) 0,36 0,00 Low (Mvar) 0,27 0,00 

Table 5. Comparison of feeder indexes 

Parameters Before After 
Losses (MWh/day) 14,89 7,91 
Active losses (peak) (%) 13,35 8,73 
Supply costs ($) 16,41.106 16,16.106 

Table 1. Feeder information 

Substation voltage (kV) 13,80 
Number of branches 167 
Installed apparent power (MVA) 9,72 
Load power factor 0,85 
Substation energy tariff ($/MWh) 60,00 
Supply voltage limits (%) ±10 

Table 2. Generators data 

Type 
nom

Gi
P  

(MW) 
min

iGpf  max
iGpf  Acquisition 

($) 
Operation 
($/MWh) 

1 0,20 0,80 0,98 35.000,00 75,00 
2 0,30 0,80 0,98 45.000,00 72,50 
3 0,40 0,80 0,98 52.000,00 72,50 
4 0,60 0,80 0,98 61.000,00 70,00 
5 0,80 0,80 0,98 76.000,00 70,00 

Table 3. Optimization method parameters 

Number of individuals 100 
Number of generations 200 
Number of opponents per individual 10 
Cost conversion factor λv ($) 3,5.105 
Divisions of generation intervals  nP, nQ 5 


