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ABSTRACT 
Recorded disturbances are often evaluated manually by 
specialists. However, a lot of time could be saved if a 
majority of the recorded information could be classified 
automatically. This paper proposes a novel classification 
system based on the Support Vector Machine method for 
automatic classification of seven types of voltage 
disturbances. The performance of the classification system 
was investigated using synthetically generated training data 
and the test data originated from real disturbances 
recorded in two different power networks. The conducted 
classification tests showed an overall detection rate of 
81.6%, 91.9% and 99.5% respectively. 
. 

INTRODUCTION 
The deregulation of the energy market, increasing energy 
prices and more demanding customers has forced utilities to 
become even more customer-oriented. As a consequence, 
high network reliability and good power quality have been 
increasingly important to keep customers satisfied. 
Translated into the field of power network monitoring this 
means an increased demand for more automatic monitoring 
systems. Today most of the data recorded by monitoring 
equipment like power quality instruments, protection relays 
and digital fault recorders, is analyzed manually by 
specialists. However a lot of time could be saved if common 
types of events could be classified automatically. Thereby, 
the specialists could focus on solving more sophisticated 
power quality problems. This requires the development of 
robust and reliable classification systems. A number of 
works based on different methods for detection and 
classification of voltage events and other power quality 
disturbances have been published over the past years. 
Theoretical foundations of voltage events are for example 
described in [1]. Classification systems based on wavelets 
are given in [2] and [3] and a statistical maximum-
likelihood based method is described in [4]. A 
comprehensive approach including the description of an 
expert-system for automatic classification of voltage events 
is given in [5]. During the past five years another 
classification method – the Support Vector Machine (SVM) 
method – has become increasingly popular due to its 
powerful theoretical and practical characteristics. The SVM  
 

 
method is based on the statistical learning theory and its 
theoretical foundations – which are beyond the scope of this 
paper – are described in detail in [6] and [7]. Different 
applications using the SVM method within the field of 
power delivery and power systems are for example reported 
in [8] –[10]. The SVM method is based on supervised 
training, which means that the SVM classifier must be 
trained before it is able to classify unseen events. This is 
achieved by feeding the SVM with a large number of 
already classified events in terms of extracted features that 
characterize each event type. From these feature data the 
SVM calculates the most optimal decision boundary 
(hyperplane) that separates the classes. Then, if the 
statistical properties of features extracted from unseen data 
are similar to the properties of the training data we can 
expect high accuracy in the classification of unseen data. 
However, before a classification system based on the SVM 
method becomes attractive to implement in a commercial 
system, it must be able to be pre-trained from factory and 
fed with parameter settings valid globally. It is not realistic 
that the customer itself is responsible for training of the 
SVM. 
Motivated by this, the aim of this work was i) to propose a 
classification system using SVMs which are trained on 
synthetic data and ii) investigate the performance of such a 
system. Synthetic training data from seven types of voltage 
events were generated by the power network simulation 
toolbox SimPowerSystems in Matlab. The test data 
originated both from real events recorded in two different 
power networks and from synthetically generated data. 
The next section of this paper describes segmentation and 
feature extraction philosophies. The paper continues with 
the proposed classification system followed by the results of 
conducted experiments. 

SEGMENTATION AND FEATURE 
EXTRACTION 
A voltage event is a sudden change in the waveform caused 
by short circuits, overloads or starting of heavy motors etc. 
[1], [5], [11]. Fig. 1 represents a typical voltage event with 
its waveform representation and rms signature.  
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Fig. 1. Voltage event with its waveform (top) and rms signature (bottom). 
Shadowed areas indicate transition segments. 
 
Different types of events give different patterns in the time- 
and frequency domain. This implies that a classification 
system can be achieved if robust features can be identified 
that describe a particular event. 
A voltage event can also be divided into a number of 
transition segments (shadowed areas in Fig. 1) and event 
segments. Transition segments correspond to large and 
sudden changes in the signal and the event segments are the 
segments in between the transition segments.  
The voltage event in Fig. 1 can be divided into five 
segments. Segments I and V are pre- and post-event 
segments. Segments II and IV are transition segments and 
segment III is the event segment.  In segment II and IV the 
signal is non-stationary and hence no robust and reliable 
features can be extracted from these segments. Also the pre- 
and post event segments are of limited interest for feature 
extraction since the event has not started or has passed. 
Hence the remaining used for feature extraction is segment 
III where the event is in its most stationary phase. This 
segment contains information that is normally unique 
enough to distinguish between different event types. 
Examples of features used for classification purposes are: 
rms voltage; harmonic spectrum; symmetrical components 
and duration [11]. 

PROPOSED CLASSIFICATION SYSTEM 
The proposed system is based on classification in two steps; 
detection of transition segments in the first step followed by 
the classification itself in the second step by using 
individually trained SVMs connected in a binary decision 
tree configuration. A complete block diagram of the 
proposed classification system is given in Fig. 2. First, the 
waveform of the disturbance is fed to pre-processing block 
(Fig. 2 block (a)) which normalizes the signal to a common 
format in order to make the information fit to the remaining 
blocks.  

 
Fig. 2. Block diagram of the proposed classification system 

 
Segmentation 
Next (Fig. 2 block (b)) is the segmentation block. As 
mentioned before, different types of disturbances will cause 
different number of transition segments. Since the 
information suitable as a feature is mainly calculated in 
between the transition segments we need a mechanism that 
identifies the starting point of each transition segment. 
Furthermore, as the event types to be classified become 
more complicated the number of transition segments will 
increase and the optimal features to be extracted will also 
probably differ. Dividing the event types into different 
groups depending on the number of transition segments 
opens up for flexibility in terms of feature extraction since 
different feature sets can be defined for each group. Another 
advantage with grouping the events is that the classification 
system can easily be extended with new groups without 
interfering with already existing groups.  
A transition segment detector can be designed in different 
ways; however from an implementation point of view it 
should be both accurate and fast. A block diagram the 
detector implemented in the proposed classification system 
is given in Fig. 3. The input signal to the detector is the 
three phase rms signature of the disturbance based on one 
cycle integration time with no overlap. First (Fig. 3 block 
(a)) the absolute values of the input signal are calculated in 
order to prepare for the threshold detection. Then (Fig. 3 
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block (b)) the derivative of the absolute values is calculated 
in order to identify sudden changes in the signal. Finally, a 
pre-set threshold level is used for decision whether a sudden 
change is the starting point of a transition segment or not 
(Fig. 3 block (c)). Starting points are at those sampling 
points where the output signal of block (b) crosses the 
threshold level with positive derivative. 

 
Fig. 3. Block diagram of the transition segment detector. 
 
The output of the threshold block is the coordinates of the 
detected transition segments in terms of sample points. 
Finally, the transition segment detector used in this work 
was designed to identify one- and two transition segments 
events. However to extend the detector to detect more 
groups is an easy task (Fig. 2 block (b)). Furthermore, 
conducted performance tests showed an overall detection 
rate of 96.8% for the detector. 
 
Feature extraction and classification 
Next are the feature extraction and the classification itself 
(Fig. 2 blocks (c) and (d)). All features are extracted with 
the beginning immediately after the first transition segment 
and the following features are extracted: i) 11 rms values 
per phase equally spread in time. The rms calculation is 
based on one cycle integration time; ii) The fundamental, 
second, third, fifth and ninth harmonic voltage magnitude 
and the THD per phase; (iii) The symmetrical components; 
(iv) The time duration of the event. This results in a feature 
vector of 55 components. The feature vector is then fed to 
trained SVMs which are connected in a binary decision tree 
configuration. This means the first SVM1 is trained to 
classify event type D1, SVM2 is trained to classify D2 etc. 
and works as follows: A feature vector from an arbitrary 
event type enters the classifier (Figure 2 block (d)) related 
to the group that the disturbance belong to. First, the 
classifier checks whether the event characterized by the 
feature vector is of type D1 or not. If it is, the classifier 
indicates that type D1 is recognized and stops. If not the 
classifier continues to check against the remaining event 

types until success. If no match was found the classification 
failed and the system indicates ‘not classified (NC)’. 

EXPERIMENTAL TESTS AND RESULTS 
Three experiments were obtained in order to investigate the 
performance of the classification system. In all three 
experiments were the classifier system trained on 200 
synthetic data per event type. All synthetic data were 
generated from a power network model built in 
SimPowerSystems toolbox for Matlab. The test data 
originated from both real data and synthetic data. Table 1 
shows the type of events classified by the proposed 
classification system. In the same table is also the number 
of available test data that originate from different sources 
(i.e. from power network A, power network B and from 
synthetically generated data).  

 
Event  
type 
 

Event # of events 
from 
Power  
network A  

# of events 
from 
Power  
network B  

# of events 
from 
synthetic 
data  

D1 Single phase 
dip 

116 418 - 

D2 Two phase dip 
 

152 92 - 

D3 Three phase dip 
 

113 142 - 

D4 Step-change 
(positive) 

- - 100 

D5 Step-change 
(negative) 

- - 100 

D6 Interruption 
 

- - 100 

D7 Transformer 
energizing 

158 - - 

Table 1. Type of events that are classified by the classification system 
together with the number of available test data per event type.  
 
Event types D1-D3 belong to group 2 events (i.e. two 
transition segments) and the remaining ones belong to group 
1 since they have one transition segment. More detailed 
information regarding characteristics of events is given in 
[5]. The first experiment was carried out on test data with 
two transition segments (i.e. D1-D3) originated from power 
network A. The second experiment classified the same type 
of events as in the first experiment but the test data 
originated from power network B. Finally the third 
experiment classified event types with one transition 
segment (i.e. D4-D7). The classification results are given in 
Tables 2-4.  
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 D1 D2 D3 NC Detection rate 
 

D1 93 0 14 9 80.2% 

D2 6 133 0 13 87.5% 

D3 4 0 85 24 75.2% 

Overall detection rate 81.6% 

Table 2. Classification results from experiment 1. The voltage events have 
two transition segments and originate from power network A. 
 
 D1 D2 D3 NC Detection rate 

 
D1 393 0 2 23 94.0% 

D2 3 80 0 9 87.0% 

D3 2 0 126 14 88.7% 

Overall detection rate 91.9% 

Table 3. Classification results from experiment 1. The voltage events have 
two transition segments and originate from power network B. 
 
 D4 D5 D6 D7 NC Detection rate 

 
D4 100 0 0 0 0 100% 

D5 0 100 0 0 0 100% 

D6 0 0 100 0 0 100% 

D7 0 0 0 156 2 98.7 

Overall detection rate 99.5% 

Table  4. Classification result for voltage events with one transition 
segment and originating from power network A (D7) and from synthetic 
data (D4-D6). 
 
Each row in Table 2-4 is an event type and the column 
gives the number of classifications per event type. The 
number of correct classifications are thus in the diagonal of 
the tables. The column NC indicates that the classifier failed 
to classify to any appropriate class. 
 
Analysis of the results 
We observe from the test results that the overall detection 
rates were high for experiment 2 (Table 3) and experiment 3 
(Table 4) and slightly lower for experiment 1 (Table 2). The 
detection rates (100%) for event types D4-D5 was because 
the testing data and training data originated from the same 
source (synthetically generated data) and had therefore 
identical statistical characteristics. For all other event types 
training data and test data originated from different sources 
and therefore the detection rates became slightly lower. One 
way to increase the detection rates could be to refine the 
model that generates the synthetic data as well as fine-tune 
the SVM classifier in order to determine more optimal 
parameter settings. However, fine-tuning the SVM must be 
taken with care since it is a risk of overfitting resulting in a 
decreased generalization capability if tuning parameters 
become ‘over-optimized’. Finally we can conclude from the 
results that chosen features characterize the event types 
quite accurately. 

CONCLUSION 
This paper proposes a system for automatic classification of 
seven common types of voltage events. The system is based 
on classification in two steps; detection of transition 
segments in the first step followed by the classification 
itself in the second step by using individually trained SVMs 
connected in a binary decision tree configuration. 
Furthermore the SVMs were trained on pure synthetic data 
and test data was from real voltage events recorded from 
two different power networks and from synthetic data. The 
performance tests showed that such classification structure 
offers both flexibility and high overall detection rates. It is 
also easy to maintain and is flexible in terms of adding new 
event types to the classification system. A further work is to 
refine the model used for generation of synthetic data in 
order to include more event types as well as an investigation 
whether other types of feature can be extracted that 
characterizes event types even better than the ones proposed 
in this work. 
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