ACTIVE EARTHING SYSTEM FOR MV NETWORKS BY MEANS OF POWER ELECTRONICS

F.J. Pazos
A. Amezua, I. Gutierrez
J. M. García
G. Santamaría
V. Valverde
MV Earthing

• MV and HV basic criteria
 – Person and system safety
 • Touch and step voltages
 • Fault current limit
 • Required insulation level
 – Network protection system
 • Relaying
 – Power Quality
 • Reliability of supply
 • Voltage dip/swell

• Not uniform criteria
Most common...

Low impedance

Solid
Cable

Reactors
Resistor
Zig-zag

Compensated

Arc suppression coil

... or Isolated System.
State of the Art

<table>
<thead>
<tr>
<th>Earthing System</th>
<th>Voltage dips</th>
<th>Interruptions</th>
<th>Material stress due to</th>
<th>Protection</th>
<th>Suitability for large underground networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td></td>
<td>Short</td>
<td>Long</td>
<td>Fault current</td>
<td>Over-voltage</td>
</tr>
<tr>
<td>Low Impedance</td>
<td></td>
<td>Short</td>
<td>Long</td>
<td>Fault current</td>
<td>Over-voltage</td>
</tr>
<tr>
<td>Isolated</td>
<td></td>
<td>Short</td>
<td>Long</td>
<td>Fault current</td>
<td>Over-voltage</td>
</tr>
<tr>
<td>Compensated</td>
<td></td>
<td>Short</td>
<td>Long</td>
<td>Fault current</td>
<td>Over-voltage</td>
</tr>
</tbody>
</table>

- Good
- Fair
- Poor or requires complex systems

- **System response to faults**
 - Depends on fault and earthing impedance
 - Cannot be modified by user
- **Drawbacks in some features**
Zero sequence equivalent

\[I_N = -3\cdot I_C + I_{\text{Asymmetry}} \]

\[V_N = 3\cdot I_C \cdot Z_{3C} \]

\[Z_0 = Z_{3C} / Z_{\text{Asymmetry}} \]
Active Earthing: Goal

- Control phase-to-earth voltages
 - Controlled neutral current injection
 - Controlled neutral to earth voltage
- Phase-to-phase voltages remain unchanged

\[
\begin{align*}
\overline{V}_N &= \overline{I}_N \cdot \overline{Z}_N = \overline{V}_0 = \overline{I}_0 \cdot \overline{Z}_0 \\
\overline{V}_{\text{phase-to-earth}} &= \overline{V}_{\text{phase-to-neutral}} + \overline{V}_N
\end{align*}
\]
System Topology

- Combination of
 - Protective relay
 - System control
 - Fault detection
 - Measurements
 - Power electronics
 - 50 Hz current to change V_N
 - Other frequencies for fault location
Earth-fault detection

- Zero sequence voltage measurement
 - $|V_0| > |V_{\text{threshold}}|

- X/R change
 - $(X/R)_{\text{measured}} < (X/R)_{\text{no_fault}}$
Fault extinction

• **Target:**
 – V faulted phase = 0 \implies Fault current $\approx 0A$

• **Risk:**
 – Overvoltage in sound phases
Fault location

• Frequency ≠ 50 Hz
 – Accurate measurements.
 – Less influence of load current
 – Different change of impedance in faulted feeder
 – Improves distance to fault measurement
Predictive Maintenance

- Controlled undervoltage
 - Prevent insulation failure
- Controlled overvoltage
 - Provoke leakage
 - Check insulation: cables, surge arresters…

\[
\text{Phase-to-earth voltages} + \text{Neutral-to-earth voltage} = \text{Resulting phase-to-earth voltages}
\]
Active vs. Passive

<table>
<thead>
<tr>
<th>Earthing System</th>
<th>Voltage dips</th>
<th>Interruptions</th>
<th>Material stress due to</th>
<th>Protection</th>
<th>Suitability for large underground networks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Short</td>
<td>Long</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Impedance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Good**: Green
- **Fair**: Grey
- **Poor or requires complex systems**: Red
Improved Power Quality

• Payback for active earthing
 – Fault extinction
 • Voltage dip number reduction
 • Lower system stress levels
 – Fault location
 • Statistics based corrective maintenance
 – Predictive Maintenance
 • Insulation replacement
 • Tree trimming…
Step 1: Validation on a scale model
Step 2: Field Installation

- Gernika 30/13.2 kV, 10 MVA substation
Thank you very much!

Aitor Amezua
Product Manager

Oldar Electrónica, S.A.
Barrio Basautz, 2 - 48140 IGORRE (Vizcaya) - Spain
☎️+34 946 305 113 ☏️ +34 946 305 112 📧 ama@ormazabal.com