ALTERNATIVE INVESTMENT STRATEGIES FOR IMPROVING DISTRIBUTION SYSTEM RELIABILITY BY USING REPRESENTATIVE NETWORKS

Sana Kairudeen1, Jelena Rebic1, Predrag Djapic1, Alexandre Silva2, Goran Strbac1

1Imperial College London
2EDP Portugal

mkmsana05@imperial.ac.uk
Introduction

• The regulation of distribution network monopolies has been shifted from asset-based to Performance based
• The enormous diversity in real distribution systems has been a major obstacle for strategic planning activities
• In order to simplify the planning decision-making processes, a Representative Networks (RNs) model has been implemented
Objectives

• Strategic assessment of reliability performance of distribution networks

• Evaluation of benefits of alternative investment strategies to improve reliability performance

• Quantifying cost - benefit assessment with alternative investment strategies
Methodology 1/2

- Disaggregation
- Construction of representative networks
- Reliability evaluation
Methodology 2/2

- Investment Scenario Strategies
 - upgrading cables
 - refurbishing/undergrounding OH Lines
 - improving the efficiency of fault response teams
 - increasing the number of switching devices/circuit breakers
 - introducing automation
 - introducing remote control
 - reconfiguration possibilities by means of back-fed facilities
Case Study & Results 1/2

- This methodology has been tested on six UK DNOs networks
- Case study consists of 30 feeders with total 19,349 connected customers
- The feeders are with different structural and population parameters

<table>
<thead>
<tr>
<th>Investment</th>
<th>RN</th>
<th>GROND</th>
<th>Difference[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CI</td>
<td>CML</td>
<td>CI</td>
</tr>
<tr>
<td>0</td>
<td>base case</td>
<td>16.73</td>
<td>15.69</td>
</tr>
<tr>
<td>1</td>
<td>Scenario 1</td>
<td>13.38</td>
<td>12.68</td>
</tr>
<tr>
<td>2</td>
<td>Scenario 2</td>
<td>16.73</td>
<td>14.87</td>
</tr>
<tr>
<td>3</td>
<td>Scenario 3</td>
<td>16.73</td>
<td>12.79</td>
</tr>
<tr>
<td>4</td>
<td>Scenario 4</td>
<td>13.38</td>
<td>9.60</td>
</tr>
<tr>
<td>5</td>
<td>Scenario 5</td>
<td>16.73</td>
<td>11.96</td>
</tr>
<tr>
<td>6</td>
<td>Scenario 6</td>
<td>12.72</td>
<td>11.03</td>
</tr>
<tr>
<td>7</td>
<td>Scenario 7</td>
<td>11.30</td>
<td>8.81</td>
</tr>
<tr>
<td>8</td>
<td>Scenario 8</td>
<td>10.58</td>
<td>7.69</td>
</tr>
</tbody>
</table>
• The investments scenario of adding one fault breaking device into each RN and the real feeder are performed

• The analysis of real feeders is done by GROND software

Sana Kairudeen-UK Session 5 Paper ID0990
Conclusions

• The modelling of various high-level network investment strategies on RNs have been implemented

• The obtained benefits evaluated with RN concept have considerable accuracy which is proven by the analyses on real feeders

• Future work is finish the implementation of costing
Thank You