Use of diagnostic and condition assessment techniques for asset risk management

Colin Gardner
Head of Asset Management
EDF Energy Networks
Contents

• Use of diagnostic techniques/condition monitoring for asset risk management

• Examples of techniques in use
 – Transformers
 – Switchgear
 – Overhead Lines
 – Underground Cables

• Summary

Colin Gardner – United Kingdom

14.6 GW peak demand
7.9 million homes and businesses
14.6 GW peak demand
7.9 million homes and businesses
Condition monitoring and diagnostic testing context

- **Measure**
 - Sense
 - Observe
 - Sample
 - On/off site
 - On/off line
 - Continuous/test
 - All/sample

- **Process**
 - Models
 - Algorithms

- **Interpret**
 - Assess capacity
 - Remnant life
 - Reliability
 - Policies etc.

- **Act**
 - Maintain
 - Replace
 - Develop
 - Repair
 - Operate

Colin Gardner – United Kingdom
Condition based risk management

Condition

Combined Health Index
Existing

Degradation
Failure mech.
Environment Duty

Combined Health Index
Future – no intervention

Investment plan

Intervention
Repair
Refurbish
Replace

Combined Health Index
Future – with intervention

Probability of failure

Consequences
network performance, safety, cost, environment

Criticality

Existing Risk

Future Risk
no intervention

Future Risk
with intervention

Colin Gardner – United Kingdom
ASSET CONDITION CATEGORIES

- 4 point condition scoring: 1 as new, 4 end of life
- Multiple condition points for each asset
- Condition 3 triggers refurbishment if economic
- Condition 4 triggers high volume asset replacement
- Individual detailed assessment for high value assets
- Type defects trigger additional condition monitoring
Health Index

Year 0 Health Index Profile

<table>
<thead>
<tr>
<th>Number of Assets</th>
<th>Primary CB</th>
<th>Distribution SG</th>
<th>Distribution CB</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 10 Health Index Profile

<table>
<thead>
<tr>
<th>Number of Assets</th>
<th>Primary CB</th>
<th>Distribution SG</th>
<th>Distribution CB</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Replacement Intervention HI Profile at Year 10

<table>
<thead>
<tr>
<th>Number of Assets</th>
<th>Primary CB</th>
<th>Distribution SG</th>
<th>Distribution CB</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health index shift

Colin Gardner – United Kingdom
Asset Risk

Total Condition and Non-Condition Risk

- Year 0 Risk Profile
- Year 10 Risk Profile
- Year 10, % replacement
- Year 10, Targeted Intervention
- Risk of New Assets

Colin Gardner – United Kingdom
TRANSFORMERS

- Routine oil tests
- On-line oil monitoring
- Winding temperature sensing
- Thermal imaging
- Tap changer operations and motor current
- Partial discharge
- Bushing tests
- External condition
- Management systems
MEASURES TO MINIMISE MAINTENANCE AND EXTEND LIFE

Conservator air bag

Automatic breathers

On line gas and moisture monitor
Good coatings
Temperature sensing
On line management systems

Colin Gardner – United Kingdom
ROUTINE OIL SAMPLING:

Indicates the condition of core, winding and insulation

The routine tests comprise:
• Dissolved gas analysis
• Moisture content
• Acidity
• Breakdown voltage
• Furan content
• PCB content

![Condition based on oil results chart](chart-image)
Prague, 8-11 June 2009

Colin Gardner – United Kingdom

SCADA OPERATIONAL DISPLAY

ATM MO150 STATUS (ACTIVE/FAIL)

Duke Street T1 132/11/11kV

132kV Winding

11kV Winding

11kV Winding 1

11kV Winding 2

THERMAL INDICATIONS

MAIN TANK

- Top Tank Oil Temp. °C
- Winding Bubbling Temp. Margin °C
- Highest Winding Hot-Spot Temp. °C
- 132kV Winding Hot-Spot Temp. °C
- 11kV Winding 1 Hot-Spot Temp. °C
- 11kV Winding 2 Hot-Spot Temp. °C

TAP CHANGER TANK

- Tank Temp. °C

DERIVED TRANSFORMER CONDITION

- Cooling Efficiency Index

GAS & MOISTURE MEASUREMENTS

- Hydran Level, Main tank (ppm)
- Hydran Level, COOLING CIRCUIT (ppm)
- %RH Level
- Winding Paper Moisture Content (ppm)
- Insulating Barrier Moisture Content (ppm)
- Hydran Level, Tap Changer Tank (ppm)
Trend Analysis

Derived Transformer Condition
- Cooling Efficiency Index
- Cumulative Aging (days)
- Cumulative Age (days)

Thermal Indications

Main Tank
- Top Tank Oil Temp. °C
- Winding Bubbling Temp. Margin °C
- Highest Winding Hot-Spot Temp. °C
- 132kV Winding Hot-Spot Temp. °C
- 11kV Winding 1 Hot-Spot Temp. °C
- 11kV Winding 2 Hot-Spot Temp. °C

Tap Changer Tank
- TC Tank Temp. °C
- Short Term Average Differential °C
- Long Term Average Differential °C

Gas & Moisture Measurements
- Hydran Level, Main tank (ppm)
- Hydran Level Hourly Trend, Main tank (ppm)
- Hydran Level, COOLING CIRCUIT RETURN (ppm)
- Hydran Level, OLTC Selector (ppm)
- %RH Level
- Winding Paper Moisture Content (ppm)
- Insulating Barrier Moisture Content (ppm)
- Actual Tap Position

Long Term Asset Management

TREND DISPLAYS...

Make use of comprehensive PI data analysis in PI ProcessBook

Colin Gardner – United Kingdom
SWITCHGEAR

- Partial Discharge
 - TEV, ultrasound, UHF
- Circuit breaker timing
 - Test
 - SCADA timing
- Fluid pressure and density
- Fluid tests
- Contact wear
- Thermal imaging
- Protection and control supervision
PARTIAL DISCHARGE DETECTION (Handheld)

- Detects Transient Earth Voltage using a contact probe and by monitoring airborne ultrasonic signals
- Simple to use: Red, Amber and Green indications
- Used during routine substation inspection

Colin Gardner – United Kingdom
PARTIAL DISCHARGE DETECTION (Monitoring)

- Continuous monitoring of switchgear where discharge has been detected by some other measure
- Remotely monitored plus local alarm
- Software enables point of discharge to be located

PDM03: TEV Monitor

ASM: TEV & Ultrasonic Monitor

Colin Gardner – United Kingdom
OVERHEAD LINES

- Helicopter and foot patrols
- High definition photography
- Thermal imaging
- Conductor corrosion
- Foundation corrosion
- Residual strength
 - Ultrasonic, wood poles
 - Sample mechanical tests
HIGH RESOLUTION PHOTOGRAPHS

20 to 40 photographs taken of each tower from a helicopter

Used for investment planning and procurement

Colin Gardner – United Kingdom
Overhead Line Health Indices

<table>
<thead>
<tr>
<th>ACD</th>
<th>Muffs</th>
<th>Signs</th>
<th>Tower Steelwork</th>
<th>Earthwire</th>
<th>Insulators And Fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti Climbing Guard</td>
<td>Barbed Wire</td>
<td>Barbed Wire Spacers</td>
<td>Concrete Condition</td>
<td>Safety Signs</td>
<td>Property Plate</td>
</tr>
<tr>
<td>3 3 3 4</td>
<td>u u u 1 1 1</td>
<td>3 3 4 3 3 3 4 2 3 3</td>
<td>u 2 3 4 1 4 4</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>3 3 3 4</td>
<td>y 3 1 1 1 1 m 3 3 4 3 3 4 2 2 2</td>
<td>1 2 3 4 1 m 4</td>
<td>2 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3 u u u 1 1 1 1 3 3 3 3 3 4 3 3 2</td>
<td>1 3 3 4 1 4 4</td>
<td>3 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 2 4 y 2 1 1 1 1 3 3 3 3 3 4 2 3 2</td>
<td>1 2 3 4 1 4 4</td>
<td>2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3 4 y 2 1 1 u 1 3 3 3 3 3 4 2 2 2</td>
<td>1 2 3 4 1 4 4</td>
<td>3 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2 4 3 y 2 1 1 u 1 2 2 3 3 3 4 2 u u</td>
<td>u 2 3 4 1 4 4</td>
<td>3 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 2 2 u u u 1 1 1 2 2 2 3 3 4 u u 1 1 1 2 u u 1 2 2 3 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 3 u u u 1 1 1 3 3 3 3 3 4 u u u u 2 u u 4 1 4 4</td>
<td>2 u</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2 2 u u u 1 1 u 1 3 3 3 3 3 4 u u u u 2 u u 4 1 4 4</td>
<td>2 u</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Health indices show the condition of individual components.

Colin Gardner – United Kingdom
UNDERGROUND CABLES

- Partial discharge mapping (on/off line)
- Fluid pressure
- PFT fluid leak detection
- Distributed Temperature Sensing
- Cable and joint sample assessments
PARTIAL DISCHARGE MONITORING EQUIPMENT – MV Cables

ON-LINE CONDITION MONITORING

ANALYSIS: WEB INTERFACE

Colin Gardner – United Kingdom
AVOIDANCE OF AN MV CABLE FAULT

INCREASING PD ACTIVITY

STAGE 1: On-line monitoring

ON-LINE MAPPING

OFF-LINE MAPPING

CABLE ANALYSIS

NO DISCHARGES FOLLOWING RE-ENERGISATION

Colin Gardner – United Kingdom
FLUID FILLED CABLES (FFC)

- Approximately 2,500km of fluid-filled cable, containing approximately 27 million litres of fluid
- Over 50% of the London HV network is FFC
- Most cables installed in the 1960s, some date back to 1930s
- Risk based repair and replacement based on
 - Environmental sensitivity
 - Condition and criticality
 - Leak detection techniques
FFC ENVIRONMENTAL RISK ASSESSMENT

Legend

- Purple – Very High Risk
- Red – High Risk
- Orange – Medium Risk
- Yellow – Low & Risk
FFC CIRCUIT CLASSIFICATION

Environmental sensitivity vs. Condition/accessibility/Fluid loss
FLUID FILLED CABLES: CABLE PRESSURE MONITORING

LOSS OF PRESSURE DUE TO OIL LEAK

SUMMER

WINTER

Colin Gardner – United Kingdom
Reduced leakage, repairs and replacement

Colin Gardner – United Kingdom
Summary

- A range of techniques developed – some on line some stand alone
- New equipment specified to enable diagnostic testing/condition monitoring
- Essential support for asset risk management
- Need to develop fully integrated approach
- Key component of Smart Grids