Avoidance of MV Switchgear Failure, Case Studies of On-Line Condition Monitoring

Cliff Walton
Discussion

- Large scale on-line condition monitoring
- Experience of combinations of sensors
- Remote location of discharging assets
- Load, Temperature, Humidity & Pressure
- Defect types
- Time to failure
Large Scale On-Line monitoring

- 60 primary substations 11/33/63/225kV
- 10 distribution substations
- 1000+ switchgear panels monitored
- 1850+ sensors
- 5 years
- SE England (Public & Private)
- France, Hungary, Germany
Avoiding Switchgear Failure

- 1150 substations (33 kV and 11 kV)
- Average of 32 switchgear incidents per year (incidents on 2.7% of substations per annum).
- Effects varied from no interruption in supply to the equivalent of 12 customer years of interruption.
Five Types of Sensors

Capacitive Coupler

Airborne Acoustic

Temperature & Humidity

Cliff Walton UK Session RT1a Paper 0422
Typical Phase Plot

Cliff Walton UK Session RT1a Paper 0422
Location by Transient Voltage Histogram

Cliff Walton UK Session RT1a Paper 0422
Location by Time of Flight

CT Synchro Pairs

7 Day Precedence

Pulse Precedence

Activity over 7 days

T(ch14) minus T(ch13) in 10ns bins

CT Synchro Pairs

7 Day Precedence

Cliff Walton UK Session RT1a Paper 0422
PD, load, temperature, humidity and pressure

Prague, 8-11 June 2009

Cliff Walton UK Session RT1a Paper 0422
Benefits

• Robust, automated early warnings for timely, targeted interventions before catastrophic failure.
• Identify discharge patterns associated with load and environment conditions at times that may not be picked up by routine manual inspections.
• Provide enhanced safety for those entering substations.
• Enable monitoring of the effectiveness of remedial interventions.
• Prevent loss of supply to customers

One failure on monitored substations in 5 years?
Some Questions

• Experience of combinations of sensors
• How accurate does location need to be
• Effects of Temperature, Humidity & Pressure
• Recognising defect types
• Time to failure