Fault Limiting Technology Trials in Distribution Networks

Applied Superconductor Ltd. was incorporated in November 2004 in Blyth (Northeast of England) at NaREC (New and Renewable Energy Centre)

Klaus, D. W. et al – United Kingdom
Collaboration Agreement for 1 pilot installation each with ScottishPower, Electricity North West and CE Electric UK

Klaus, D. W. et al – United Kingdom
Melt Cast Processed BSCCO 2212 Bulk Parts

Nexans Bulk Parts are:
- Inorganic ceramics (Bi-Sr-Ca-Cu-O)
- Available in a large variety of shapes and sizes
- Ready for assembling in electrical devices, system components or magnets

Characteristics:
- Rigid el. conductors
- Easy machining
- High current carrying capacities (100A - 12kA)
- Low thermal conductivity

Annealing at 750 - 840°C
Melt in rotating mould
Form parts from NSC being used in commercially available industrial magnet systems

Klaus, D. W. et al – United Kingdom
Production of BSCCO-Tubes

Nexans SuperConductors

Klaus, D. W. et al – United Kingdom
Klaus, D. W. et al – United Kingdom
The innovation process

IFI & RPZ – Targeted incentives for DNOs

Klaus, D. W. et al – United Kingdom
Fault Levels need to be kept low because of:

DNOs commitment to \(\leq 250 \text{MVA@11kV} = 13.1 \text{kA} \)

Ageing network assets, limited fault capacity

Klaus, D. W. et al – United Kingdom
Fault Levels tend to rise with:

- Increasing Load
- New Generation
- Interconnecting

Klaus, D. W. et al – United Kingdom
Fault Levels ideally are:

High when the system is healthy – low impedance improves power quality, stability

Low during faults – high impedance limits fault current

Klaus, D. W. et al – United Kingdom
Fault Levels can be controlled by:

Splitting the network
- Feeder fault leads to more customers interrupted
- Requires special precautions to prevent fault levels from being exceeded
- Non-compliance with design regulations

Fitting high impedance transformers or series reactors
- Increases system losses and impedance, degrading power quality
- Reduces symmetrical fault current more than peak
- Air-cored reactors produce electromagnetic radiation

Using single operation current limiting devices
- Complex sensing, decision-making and actuation chain
- Does not fail to safety (no fault limitation)
- Uses pyrotechnic (exploding link) to divert fault
- Long outage time after fault
Air-cored Reactor

Iron-cored Reactor

G&W (USA) CLiP Fault Limiter

Klaus, D. W. et al – United Kingdom
Klaus, D. W. et al – United Kingdom

- 1.2 MVA 3-phase inductive 1996 (ABB)
- 1.2 MVA 3-phase resistive (Siemens)
- 6.4 MVA 1-phase resistive (ABB)
- 10 MVA 3-phase resistive 2003 (Curl10)
Bi$_2$ Sr$_2$ Ca$_1$ Cu$_2$ O$_x$

BSCCO 2212, a layered copper oxide ceramic, was found to be a superconductor in 1988. It has a T_c of 95K which is well above the boiling point of liquid nitrogen, 77K. Nitrogen is much more widely available than most other gases and therefore less costly and considerably less cooling power is required at 77K than at lower temperatures e.g. 4K for Helium.

Klaus, D. W. et al – United Kingdom
HS Elements Nexans SuperConductors Cologne

Klaus, D. W. et al – United Kingdom
Superconductors remain in the superconducting state as long as the current, temperature and flux density remain below the critical values.

Klaus, D. W. et al – United Kingdom
The superconductor adds resistance to the circuit once the critical current is exceeded. In the normal state, the resistivity of BSCCO is many times that of copper.

Klaus, D. W. et al – United Kingdom
Prague, 8-11 June 2009

Sample 4, 73 K test 16, 120 ms

Voltage [Vx100]
Ua [V/cm]
Ub [V/cm]
Uc [V/cm]
current [kA]

6.5 kAp
380 Vp
0.8 V/cm

Iprosp. = 11 kAp
Prague, 8-11 June 2009

Klaus, D. W. et al – United Kingdom

Overcurrent Relay
Current Transformer

SFCL

Voltage Transformer

Voltage Comparator

Series Circuit-breaker
CB Trip Command

Voltage Transformer

Klaus, D. W. et al – United Kingdom
Klaus, D. W. et al – United Kingdom
PILOT 1 Operational Characteristics

Transformers upgraded to 11.5/23MVA
Fault contribution (rms) 4.2kA each
Fault contribution (peak) 11kA each

Klaus, D. W. et al – United Kingdom
Busbar fault level = 8.4kArms / 22kA peak
Old Switchgear was 150MVA @ 11kV

Breaking capacity 7.87kA
Making capacity 19.7kA
Upgrade switchgear!

Klaus, D. W. et al – United Kingdom
SOLUTION
Split Network

Klaus, D. W. et al – United Kingdom
Klaus, D. W. et al – United Kingdom

SOLUTION
Fit SFCL
Limit current so that T1 contribution + limited T2 contribution < 95% Old Switchgear Rating (7.5kA rms, 18.7kA peak)
Limited rms current = 7.5 – 4.2 = 3.3kA
Limited peak current = 18.7 – 11 = 7.7kA
Prague, 8-11 June 2009

Klaus, D. W. et al – United Kingdom
Prospective Current (SFCL short-circuited)

55.9kA peak in phase 1
20.1kA rms symmetrical

Recovery voltage across series circuit-breaker

Trip pulse to series circuit-breaker

Station X/R = 60

Transient peak = 20.6kV

Note restrike

Klaus, D. W. et al – United Kingdom
Limited Current

- 6.68kA peak in phase 2
- 0.89kA rms symmetrical

Voltage across SFCL

Current and voltage in phase

Circuit mainly resistive

Recovery voltage across series circuit-breaker

No ringing or transient overvoltage

Trip pulse to series circuit-breaker

Peak during limiting = 19.5kV

Note absence of transient part of recovery voltage

Klaus, D. W. et al – United Kingdom
Klaus, D. W. et al – United Kingdom
Lower Electromagnetic Forces on Conductors

\[F \propto I^2 \]

Less Heating in Conductors

\[\Delta T \propto I^2t \]

Less Arc Energy where

\[E = IV_{arc}t \]

Klaus, D. W. et al – United Kingdom
Lower X/R ratio

\[\frac{X}{R} = \tan \phi \]

Lower restriking voltage

\[V_r \propto V_{pk} \sin \phi \]
Fault Limiting Technology Trials in Distribution Networks