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ABSTRACT 

In 15 seconds, many hundred transitory electromagnetic 
events are captured and analyzed before flashing the LED 
that informs the worker about PDs indicating a dangerous 
failure mode. Many new ideas have been put forward to 
explain this performance.  Some are found in the hardware 
but the most important are in signal processing: time 
domain clustering (TDC) and phase-resolved partial 
discharge (PRPD) data mining (PD mining). This paper 
exposes these new ideas and shows some results collected 
in the field. 

INTRODUCTION 

Since 2006, the Hydro-Québec Partial Discharge Analyzer 
(PDA) [1] has been widely used by workers, for safety 
reasons, to perform preventive maintenance and to remove 
defective components prior to their failure. Diagnosis with 
the PDA is not fully automatic and requires that a final 
decision be made by an expert. Moreover, the overall time 
from setup to diagnosis is a safety concern when a worker 
remains inside the vault. In 2009, Hydro-Québec deployed a 
PD sniffer capable of delivering an automated diagnosis in 
under 15 seconds. This new tool is used by non-expert 
workers for their own safety. When a potential PD is 
detected by the equipment, the worker exits the vault and 
calls the PDA/thermograph team. The sniffer captures the 
transitory events at a rate of 1 Gs/s, groups similar time 
shape signals across many hundreds of events into clusters, 
analyzes the resulting clusters’ signatures in a “relative 
phase-resolved” diagram, identifies clusters having inverse 
polarities and concludes on the potential presence of a PD. 
Grouping into clusters dramatically reduces the processing 
time and significantly increases the signal-to-noise ratio. 
This allows the trigger level to be set so as to capture a PD 
close to the noise level or below some other PD activity 
levels with the help of the PD mining.  

HARWARE DESCRIPTION  

The PD sniffer head (Fig.1) includes a PD reception 
antenna, a magnetic sensor for phase-resolved 
synchronization and an emission antenna for self-testing.  
Shown in Figure 2, the PD antenna has a 350-MHz band-
width connected to a hi-pass filter.  The controller selects 
the filter block for the antenna signal, selects the gain value, 

fixes the trigger level, and enables the trigger when the 
expected phase value is reached. In the PD sniffer, the 
trigger enable is synchronized with the line phase. At the 
trigger enabling, the maximum number of captured 
segments is fixed with a maximum observation time 
duration. The trigger is active on the higher gain channel. 
When an FM signal is disturbing the measurement, the 
controller enables an external trigger connected to the 
antenna through an FM notch filter (100 MHz). The signal 
numerical conversion is done at 1 Gs/s in tandem using the 
two available channels on two 8-bit scales. This parallel 
conversion accelerates the measurement process and 
increases to 12 bits the effective input dynamic. The 
emission antenna allows the testing of the hardware and 
software chain (not shown in Fig. 2).  

 
Fig. 1 Sniffer probe. 

 
Fig. 2 Sniffer hardware: trigger enable (TE), trigger 

level (TL), gain value (GV), external trigger enable (EE), 
external trigger input (Ext), anti-aliasing filter (AAF). 

SIGNAL PROCESSING AND DIAGNOSTIC  

Many authors [2-5] propose a clustering based on the 
information available in a multidimensional PRPD 
distribution and other features such as autocorrelation 
coefficients [6] or principal component analysis coefficients 
[7], for example. Based on the field survey, 
multidimensional PRPD does not discriminate all the 
clusters: automated diagnosis is not possible and manual 
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diagnosis is not facilitated by the mixed clusters. Moreover, 
autocorrelation and the power spectrum process wipe the 
signal phase information, including the polarity information. 
Note that the Fourier transform phase contains barely 50% 
of the information about the time transient pattern. The 
proposed time domain clustering (TDC) is a process close 
to the maximum likelihood preserving both amplitude and 
phase. The next chapter details the TDC algorithm. When 
the external trigger is enabled, a numerical FM filter may be 
applied before interpolation. The TDC follows the 
interpolation as illustrated in Figure 3. A few hundred time 
samples describe the transient pattern. Segment capture is 
done on different scales. During the segment capture on a 
scale, the TDC processes the previous scale captures: PD 
capture and TDC are parallel processes except at the end 
where a TDC is done to merge all scales. 

 

Fig. 3 Signal processing flowchart 

Many features are extracted from cluster signatures.  For 
each feature, the fuzzy logic has a logic sense, a criterion 
level, a criterion span and a criterion weight. The logic 
sense sets the choice between the transition 0 to 1 and the 
inverse. The criterion level corresponds to the center of the 
fuzzy transition and the span gives the transition width.  The 
global fuzzy  

   1i i i
i

GF F W W    ,  (1) 

is the product of individual fuzzy Fi values considering the 
corresponding weight Wi where 0 1iF   and 0 1iW  .  

Table 1 gives the criterion level and scale unit of the major 
features. 
 

Table 1 
Cluster signature features and typical criterion levels 

Features Sense Level Unit 
PRPD distribution matching both 0.85 - 
PRPD distribution ∆q/∆A 1 to 0 75 Deg/dBmV
Form factor 0 to 1 0.15 Bin/ns 
Raise lobe frequency  0 to 1 37 MHz 
Time dispersion ∆t 1 to 0 80 µs 
RMS main lobe/ RMS noise 0 to 1 2 - 
E lobe Max / E lobe Before 0 to 1 5 - 
Number of half-cycle 1 to 0 6 Count 
RMS cluster phase dispersion 1 to 0 40 Deg. 
Inverse polarity exsistence 0 to 1 0.95 - 

 

“PRPD distribution matching” is a correlation factor 
between a measured and a memorized distribution.  The 
sense is 0 to 1 for the matching of a potentially dangerous 

PD. The dispersion ratio ∆q/∆A is specifically used for 
gap discharge identification.  “Form factor” corresponds to 
the ∆f/∆t ratio estimated from a time-frequency filtered 
spectrogram.  The time dispersion is estimated from the 
time signal envelope extracted with the convolutional form 
of the Hilbert transform [8]. “E lobe” means lobe energy 
integral. The “number of half-cycles” is evaluated for the 
time duration given by the time dispersion ∆t. The 
existence of inverse polarity is a correlation factor between 
a cluster signature and the negative value of another cluster 
signature. A five count in the sum of cluster populations 
having a global fuzzy greater than 0.5 generates an alarm. 

We have tested, without great success, the dispersion 
estimations ∆f and ∆t proposed by [9]. In the “raise lobe 
frequency”, ∆f is focused on the rising edge of the 
transient. In the “time dispersion ∆t”, the use of the Hilbert 
transform eliminates the contribution of the signal phase 
information.  

TIME DOMAIN CLUSTERING  

Time domain clustering is a maximum likelihood pattern 
recognition algorithm where the time signal generates its 
own description base. Assuming a constant normalized time 
signature Sn over different amplitudes, one obtains  
 

mmn m n d mnX a S n    (2) 

the realization of the measurement “m” of a transient 
signature, where ma  is the realization amplitude, dm the 

realization delay and nm the additive noise. The successive 
measurements taken over one analog input scale are called a 
sequence. The am dynamic range is less than 10 dB for a 
sequence, i.e. the ratio of the clipping level on the trigger 
setting level. The first step clustering described here is 
performed for a fixed scale. The full dynamic range is 
obtained in a second step by merging the clusters obtained 
from different A/D scales. In some cases, the am dynamic 
range exceeds 30 dB. Assuming a Gaussian noise and 
disregarding the am dynamic, the N  projection shows a 
hypersphere centered on the “i” signature 

  ,1 ,2 ,, ,...,i i i i NS S SS  (3) 

where the measurements 

  ,1 ,2 ,, ,...,m m m m NX X XX  (4) 

are close to the hypersphere boundary. For an Euclidian 
metric, the distance 
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has the expected mean 

    2
,E Ei m i mnr D N n   (6) 

for m X cluster “i” and the standard deviation 

  2Ei mnn    (7) 
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Figure 4 illustrates in N  the radius ir  and hypersphere 

boundary thicknesses 2 i . The ratio of the boundary 

thickness on the hypersphere radius tends to 0 when 
N  .  Calculated using numerous noise samples, the 
distance m iX S  appears barely constant. 

 
Fig. 4 Multidimensional illustration of two clusters 

In N , cluster probability densities appear like distributed 
shells with similar radius and thickness. With the presence 
of a significant am dynamic, the single point signature is 
replaced by a rod pointing to the axis origin. The 
corresponding shell is dilated along the axis of the rod. The 
shell thickness is increased in the rod’s direction. The e use 
of an appropriate metric can partially overcome this shell 
distortion. Correlation is use instead minimum distance for 
the last TDC done to merge the different scales. 
The merge process “segment to cluster” or “cluster to 
cluster” is driven by minimum distance between “segment 
to signature” or “signature to signature”. The merge process 

'i j i S S S  is  

  1
'i i i j j

i j
P P

P P
 


S S S  (8) 

for the new signature calculation where Pi and Pj are the 
cluster populations. The overall calculation complexity 
tends to  O N T M I    where N, T, M, I are respectively 

the numbers of time samples, the numbers of time steps 
tested for the time realignment, the number of segments and 
the number of clusters. For more details see [10].  

PRPD AND PD MINING  

The maximum number of captured segments for a scale is 
typically fixed at 100. On the first or second lower 
measuring scale it is common to fill up the buffer in less 
than a few degrees when the event rate is high. Processing 
the whole 360° with a continuous capture is time- and 
memory-consuming. The proposed PD mining optimizes  
the sampling of the PRPD in order to capture hidden PD 
clusters. The PRPD is observed through a double 
discretization (Fig.5): the discrete overlapped scales in 
amplitude and the discrete phase step mining. Best results 
are obtained with variable phase step PD mining (Fig.6). 
With variable step PD mining, the maximum phase step is 
15° and the successive steps and buffer dimensions are 
adjusted to reach 360° with 200 additional segments. 

 

  

Fig. 5 Double discretization (left). Constant phase PD 
mining (right), saturation level (SL), trigger level(TL). 

 
 

Fig. 6 Variable phase steps PD mining. 

CASE STUDIES  

In a vault environment, a typical sniffer measurement shows 
3 to 30 clusters superimposed in the “relative phase-
resolved” diagram. As illustrated in Figure 7, a large 
dynamic range PRPD is better illustrated with a logarithm 
scale. The bright green dot corresponds to a 94-segment 
cluster. Similar signature patterns are illustrated in dark 
green and opposed polarity patterns are illustrated in red.  

 

 

 
Fig. 6 PRPD diagram illustrating 1142 events, 30 

clusters, in a linear scale (top) and a log scale (bottom). 

Certain equipment, such as SF6 interrupters, have internal 
gap PDs which do not constitute a safety concern and 
should not raise an alarm. Gap PDs are characterized by flat 
PRPD distributions (Fig.7). With the help of the ∆q/∆A 
criterion, the sniffer discriminates between PDs originating 
from the latter equipment and those arising from many other 
possible sources. Last summer, two workers evacuated a 
vault after an “alarm” was signaled by the sniffer. Three 
hours later, the cable splice exploded in the vault. Figure 8 
shows the small-amplitude PD cluster which triggered the 
alarm. Figure 9 illustrates two similar clusters of opposed 
polarities (light green and red) of PDs emitted by external 
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equipment in the vicinity and captured on an elbow “T” 
connector. Note the PD mining hatching. 
 

 
Fig. 7 Time signature and PRPD diagram of a 128 DP 

cluster (green) captured in the vicinity of an interrupter. 

 
Fig. 8 Time signature and PRPD diagram of a 251 DP 

cluster (green) captured on a cable splice. 

 
Fig. 9 Time signature and PRPD diagram of a 239 

external DP cluster (green) captured with PD mining. 

CONCLUSION  

The sniffer has now been deployed for two years and is 
used with confidence by the workers. Many hundreds of 
measurements have been performed each week and con-
tribute to the continuous optimization of fuzzy criteria. The 
external trigger through an FM notch filter is used occasion-
ally and appears useful. The TDC preserves most of the 
information available from high dynamic-amplitude, large-
bandwidth transient signals. With the TDC, the information 
is reduced to a few signatures instead of numerous 
measurements, the SNR signature increases with the cluster 
population and the post-processing time is reduced. TDC, 
PD mining, new cluster signature features, electronic 
hardware with high dynamic amplitude and a large 
bandwidth are the main elements of the sniffer’s success.  
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