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ABSTRACT 
For a growing number of utilities partial discharge (PD) 
based on-line condition monitoring systems are being 
used for Medium Voltage cables. Signal processing, 
including data denoising and feature extraction, is 
fundamental to obtaining useful data from the noisy raw 
signals. Because raw data in an on-line monitoring 
system emerges on a continuous basis, the ability to turn 
raw data into useful information is a significant 
challenge, requiring further data mining, to allow 
effective insulation condition assessment. Phase resolved 
PD patterns, ψ-q-n diagrams, are the most popular 
feature description method for identifying fault type in 
High Voltage systems. When the magnitude of the electric 
field is greater than the breakdown value, PDs are 
generated at the defect site(s). As the charge dynamics of 
a given type of defect are usually consistent there is a 
defined pattern of PD signals for each type of fault, e.g. 
internal discharge, surface discharge, etc. ψ-q-n 
diagrams are related to the applied voltage waveform 
but, in contrast to off-line monitoring, the phase of the 
applied voltage is missing in on-line measurements. As a 
result, neither 2 dimensional nor 3 dimensional Phase 
Resolved Pattern (PRP) have been adopted in on-line PD 
condition monitoring systems. This paper attempts to 
identify the most important features which can be 
extracted to describe the Q-N patterns, irrespective of the 
phase information. The paper presents in detail an 
automatic Q-N pattern recognition procedure which 
includes data denoising, signal classification, PD pattern 
comparisons. The automatic pattern recognition will 
contribute to PD based on-line cable condition 
monitoring systems and will also be applicable to on-line 
PD monitoring of other high voltage apparatus, e.g., 
transformer, motor, generator, etc. 

INTRODUCTION 
Phase Resolved Pattern (PRP) identification is the most 
popular method for partial discharge (PD) signal analysis, 
[1,2,3]. The PD pattern characteristics resulting from 
different types of fault, e.g. surface discharge, corona, 
internal discharge, differ from each other. For many years, 
with the development of computer technology and 
mathematical theory, PD pattern recognition ability has 
also developed. At the end of 1960s, CIGRE working 
group 21.03 published a classic summary of partial 
discharge recognition: this work addressed factors 
involved in recognition, diagnosis of origin of discharge 

and recognition of disturbance. 12 types of typical PD 
signals and 4 types of interference signals are described 
in term of distribution and variation magnitude with 
testing voltage and application time [2]. In 1990s, Krivda 
from Delft University of Technology introduced the 
procedure of automated recognition of partial discharge, 
which contains measurements of PD pattern, feature 
extraction, classification of the pattern and decision 
process [1]. Cluster analysis and neural network are 
discussed based on fundamental feature extraction and 
data base establishment work [1]. In 21th century, novel 
PD pattern recognition methods have continued to 
develop, i.e. inductive inference algorithm [3], neuro-
fuzzy network [4], fractal image compression [5], genetic 
optimization [6], support vector machine [7], etc. Most of 
the methods cited above are applied in experimental 
situations, few methods are reported to be used in on-line 
cable PD monitoring systems. In practical, on-line 
situations there are lots of challenges to be overcome 
when attempting cable condition monitoring from PD 
pattern recognition.  
The first challenge for on-line cable monitoring systems 
is that PD signals from cable faults are mixed with strong 
background noise and interference signals, e.g. sinusoidal 
RF noise, radio and power line carrier communication 
systems, switching pulses and PD from local plant, etc. 
Extracting the all pulsative signals from the interference, 
i.e. denoising, is not simple. 
The second challenge is feature extraction to differentiate 
PD from cable from other pulsative signals discussed 
above. As the frequency bandwidths of other interference 
signals overlap with that of PD from cable, it is necessary 
to identify particular features to discriminate between 
them. After data denoising, further signal classification 
must be carried out based on the characteristics of signals 
from different sources.  
A third challenge for applying PRP systems to on-line 
monitoring system is that phase information is difficult to 
obtain. For experimental testing in the laboratory, it is 
possible to set up high voltage coupling capacitor to 
obtain phase information on the applied voltage. For on-
line application, however, it is difficult to obtain this 
phase information. There are two reasons why it is 
challenging to gain the correct voltage phase relationship. 
The first reason is that a phase shift may exist between 
voltage and current; as most sensors are current 
transformers, the reference phase will provide a 
relationship for current and not for voltage. Standard PRP 
systems require phase voltage information of measured 
cable. The second reason is that, due to cross bonding of 
the earth strap of three phases cables, PD from one phase 
will be coupled into another phase. For data acquisition 
from on-line monitoring systems, the trigger signal is 
significant to the phase information. Most of the 
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commercial on-line monitoring systems use the phase 
voltage of the units power supply as trigger signal. Data 
acquisition will be triggered at the 0 degree of the low 
voltage power supply, not 0 degree of high voltage (HV) 
applied in the cable. Although this provides a fixed 
trigger position for data capture, a random phase shift will 
be generated between the set point and the applied HV. 
A fourth challenge to pattern recognition in on-line 
systems is that, for some situations, it is difficult to 
distinguish the PRP in 3-phase data. Figure 1 (a) shows 
an example of one set of data from a piece of switchgear 
whilst Figure 1 (b) shows ten sets of data from the same 
plant overlaid. PRP is difficult to identify in Figure 1 (a), 
but clearer patterns can be identified from Figure 1 (b). In 
Figure 1 (b) a possible representation of the 3-phase 
voltage is overlaid for clarity. 
A fifth challenge is that most pattern recognition systems 
have developed from situations where only 1 phase of the 
cable is energised. For many on-line monitoring systems, 
the PD generated is due to the influence of the 3 phase 
voltages. From Figure 1 (b), the challenge is to 
automatically extract recognisable patterns where the PD 
sources may be active on all 3 phase voltages. 
 

 
Figure 1(a): One set of data from switchgear 

 

 
Figure 1(b): Ten sets of data from same switchgear 

 
A sixth challenge is automatic PRP estimation for on-line 
PD monitoring data. Although many methods are reported 
to be effective for PD pattern recognition [1, 3, 4, 5, 6, 7], 
no method is reported to be universally effective for on-
line PD monitoring system applied to MV cable, i.e. 
when signals are affected by strong noise, may contain 
PD from multiple sources, acquisition is triggered at 
random phase angle. 
A novel signal processing method and knowledge based 
PRP diagnosis technique, aimed at overcoming these 
challenges, are presented in this paper. The method 
includes Adaptive Second Generation Wavelet Transform 
(ASGWT) based data denoising, feature extraction and 
decision tree based signals classification, phase area 
demarcation, knowledge rule table and PRP estimation 
procedure. Two example applications are introduced. 

AUTOMATIC PD PRP ESTIMATION 
PROCEDURE 
Figure 2 (a) shows the signal processing system flowchart. 
Input data are processed with ASGWT based data 
denoising algorithm [8, 9]. Then decision tree based 
classification [10] is carried out based on PD feature 
extraction [8]. Pattern comparison is carried out during 
signal classification. Candidate signals are compared with 
standard PD signal criteria and interference signal criteria, 
which are created during historical signal analysis. If 
none of the criteria matches with candidate signal, further 
signal analysis is carried out to determine whether it is 
PD signals or interference signal, of which the parameters 
will be added to each signal criteria.  
 

 
Figure 2 (a): Signal processing system flow chart 

 

 
Figure 2 (b): PD pattern estimation system flow chart 

 
The pattern estimation flow chart is shown in Figure 2 (b), 
the reasons for developing the system in this manner will 
be explained later in the paper. As shown, after data 
denoising and signal classification, input signals are 
classified into different types. Then 50 sets of data are 
overlapped. In addition, the data set is divided into 12 
areas, as shown in Figure 3. 
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Figure 3: Divide data set into 12 areas, relating to voltage phase 

PRP parameters are calculated in each area, i.e. PD 
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number, PD magnitude, maximum magnitude. PD pattern 
knowledge rules and decision table are generated based 
on PD pattern expert knowledge. As most patterns relate 
discharge approximately 180 degrees apart, the PD 
pattern decision table compares PRP parameters in area 1 
with those in areas 6, 7 and 8. Similarly, PRP parameters 
in area 2 will be compared with those in areas 7, 8 and 9, 
etc. PRP estimation result is made after all areas are 
compared with their corresponding three areas.  

PD PRP KNOWLEDGE RULES AND 
DECISION TABLES 
According to the CIGRE summary [2], PD signals can be 
divided into 12 types which are described in term of 
distribution and magnitude variation with testing voltage 
and application time. For on-line application, if the 
voltage phase shift is considered, 7 typical PRP can be 
identified: these are shown in Figure 4 (b) to Figure 4 (h).  
Figure 4 (a) is typical of interference signals. Figures 4 (b) 
and (c) are PRP of corona discharge; Figures 4 (d) and (e) 
are PRP of PD from external and dielectric surface; 
Figures 4 (f) and (g) are PRP of PD from internal 
insulation affected by 1 phase voltage; Figure 4 (h) is 
PRP of PD from internal faults affected by 3 phase 
voltages. 
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Figure 4 (a): PRP type 1 Figure 4 (b): PRP type 2 

 
Figure 4 (c): PRP type 3 Figure 4 (d): PRP type 4 

 
Figure 4 (e): PRP type 5 Figure 4 (f): PRP type 6 

 
Figure 4 (g): PRP type 7 Figure 4 (h): PRP type 8 

 
As introduced in Figure 3, each data set is divided into 12 
areas. In each two corresponding areas, 6 parameters are 

computed, i.e. PD number, PD magnitude, PD maximum 
value of each area.  In Table 1, data from regions 1 and 6 
are entered. PD number in area 1 is named N1; PD 
number in area 6 is named N2; Total discharge magnitude 
in area 1 is named A1; Total discharge magnitude in area 
6 is named A2; PD maximum value in area 1 is named 
M1; PD maximum value in area 6 is named M2. The PRP 
decision table developed for this set is shown in Table 1; 
parameters are all normalised. 
 

Table 1 PRP decision table 
 

Types N1 N2 N2
N1

A1 A2 A2
A1  

M1 M2 M2
M1

Type1 >1 >1 =1 >1 >1 =1 >1 >1 =1 

Type2 =0 >1 =0 =0 <-1 =0 =0 <-1 =0 

Type3 >1 =0 \ <-1 =0 \ <-1 =0 \ 

Type4 >1 >1 =1 >1 <-1 >-1 >1 <-1 >-1 

Type5 >1 >1 =1 <-1 >1 <-1 <-1 >1 <-1 

Type6 >1 >1 =1 >1 <-1 =-1 >1 <-1 =-1 

Type7 >1 >1 =1 <-1 >1 =-1 <-1 >1 =-1 

Type8 >1 >1 =1 <-1 >1 =-1 <-1 >1 =-1 

 
When area 2 is investigated, corresponding areas are 7, 8 
and 9, as shown in Figure 5. Similar comparisons are 
made across the full data set and a new decision table is 
built for each investigation. 
The outcome of the analysis gives an indication of the 
most viable PRP for the cable under investigation. Two 
examples of investigations undertaken by the authors are 
presented in the following sections. 
 

 
Figure 5: Area 2 and corresponding areas 

EXAMPLE 1 OF APPLICATION TO ON-SITE 
TESTING DATA 
The result of the application of the system to one set of 
on-site PD testing data is shown in Figure 6.  
Figure 6 (a) shows the raw data in green and the output of 
the ASGWT data denoising in other colours, as discussed 
below. Peaks in dark blue are extracted PD signals; those 
in red are interference signals.  Figure 6 (b) shows PD 
number in each area. Figure 6 (c) shows PD magnitude in 
each area. Figure 6 (d) shows maximum PD magnitude in 
each area.  Histogram in blue is statistical value of PD 
signals with rise time less than 100 ns; histogram in green 
is statistical value of PD signals with rise time greater 
than 100 ns and less than 200 ns; histogram in yellow is 
statistical value of PD signals with rise time greater than 
200 ns and less than 350 ns; histogram in pink is 
statistical value of PD signals with rise time greater than 
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350 ns. 
 

 
Figure 6: Application example of on-site PD testing data 

 
According to PD PRP estimation procedure shown in 
Figure 2 and PRP decision rules in Table 1, this set of 
data is judged to be PRP type 6, as shown in Figure 4 (f). 

EXAMPLE 2 OF APPLICATION TO ON-LINE 
MONITORING DATA 
A second application example of on-line PD monitoring 
data is shown in Figure 7.  
 

 
Figure 7: Application example of on-line PD monitoring data 

 
The assignment of colours of the signal and the histogram 
are the same as Figure 6. According to the PD PRP 
estimation procedure, shown in Figure 2 and PRP 
decision rules in Table 1, the pattern of this set of data is 
judged to be PRP type 6, shown in Figure 4 (f). 

CONCLUSION AND FUTURE WORK 
In summary, the following conclusions can be drawn: 

 Automatic PRP recognition requires data pre-
processing, including data denosing and signal 
classification; 
 ASGWT is an effective data denoising algorithm 

for on-site testing data and on-line monitoring data; 
 Data stack processing will be significant for 

some of the case study; 

 PD pattern knowledge rules are important for 
automatic PRP recognition; 

Future work: 
 Establish PD PRP knowledge rule decision table 

for on-line application system; 
 Data mining from large scale on-line monitoring 

data should be undertaken to confirm the most 
effective parameters describing PRP; 
 Application of system to on-line monitoring 

system to demonstrate robustness of system. 
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