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ABSTRACT 
This paper presents a hybrid metheuristic procedure for 
expansion planning of distribution networks. The proposed 
procedure combines simulated annealing technique and 
mixed integer linear programming algorithm in order to 
overcome the shortcomings of each of individual 
approaches. The obtained numerical results show that 
proposed approach has the potential to improve the quality 
of solutions of real size planning problems.    

INTRODUCTION 
Distribution expansion planning is a hard combinatorial 
optimization problem with long history of contributions for 
improved solutions [1],[2]. Two main groups of methods 
have been proposed for solving such a complex problems: 
artificial intelligence (AI) based methods and mathematical 
programming based methods.  
The proposed AI models [3]-[6] can provide good solution 
for real (large) size distribution networks but the quality of 
obtained solutions is uncertain since they have not been 
compared with the true global optimal solutions so far. 
Mathematical programming based methods mostly employ 
mixed integer linear programming (MILP) algorithms 
[7],[8]. Although the MILP models can guarantee that 
global optimal solution will be found, due to significant 
computational complexity they are limited to smaller size 
problems.     
This paper proposes a new algorithm for expansion 
planning of real size distribution networks that is based on 
the local network concept, branch-exchange algorithm, 
MILP model and simulated annealing (SA) technique. The 
goal is to combine the advantages of AI and mathematical 
programming based methods in order to improve the quality 
of solutions of larger size planning problems. 
In the first step of the algorithm the initial solution is 
obtained by dividing the considered network into a number 
of sub-networks (local networks) and then solving each of 
them by applying the properly designed MILP algorithm 
aimed to minimize investment cost. This solution is further 
iteratively modified using simulated annealing technique to 
search for the minimum total cost solution. At each iteration 
a random neighbors are generated. The new neighbor 
structures (solutions) are generated by random modification 
of the local networks that exist in the current solution as 
well as by random creation of new local networks, i.e. by 

division of the entire network into a number of new local 
networks. In the first of described ways the exploitation of 
the current solutions (intensification) is performed while in 
the second way the exploration of the search space 
(diversification) is enabled. Every neighbor solution is 
obtained by applying the MILP model at each local network 
modified (created) during the intensification 
(diversification) phase. It should be emphasized that proper 
implementation of the above mentioned search mechanisms, 
especially the second one, can significantly improve the 
effectiveness of SA algorithm, i.e. it improves the quality of 
solutions obtained by the SA algorithm [9]. Neighbor 
solutions that improve the cost function are always accepted 
while nonimproving solutions are accepted with certain 
probability. This process is repeated until the appropriate 
stopping criterion is reached and the best solution is found.  
The obtained numerical results show that proposed 
approach can produce the same quality solutions as MILP 
based methods and thus has a potential to improve the 
quality of planning process in real size distribution 
networks. 

SOLUTION APPROACH 
The simulated annealing algorithm for solving distribution 
expansion problems can be summarized as follows: 
Input: Cooling schedule /*Initial temperature (Tmax), 
Final temperature (Tmin), Cooling rate, Number of 
iterations at a fixed temperature*/. 
s = s0 ; / Generation of the initial solution / 
Tk = Tmax ; /* Starting (initial) temperature* / 
k=0;  
Repeat /*General iteration, k*/ 
Repeat / *At a fixed temperature Tk (at iteration k)* / 
Generate a random neighborhood solution s′; 
ΔE = f (s′) − f (s); /*Cost difference*/  
If E ≤ 0 Then s = s′; / *Accept s’ as the current solution*/ 
If  f (s’) − f (sbest)<0 Then sbest = s’; / *Accept s’ as the 
best solution found so far (sbest)* / 
Else Accept s′ with a probability ; /e kE T−Δ

Until Equilibrium condition / *e.g. a given number of 
iterations executed at each temperature Tk */ 
Tk+1 = g(Tk ) ; /* Cooling rate*/ 
k=k+1; 
Until Stopping criteria satisfied /* e.g. Tk < Tmin*/ 
Output: Best solution found. 
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The elements of the above algorithm are described in more 
details in the squeal.  

Cooling schedule 
The cooling schedule is the control strategy used from the 
beginning until the convergence of the simulated annealing 
algorithm. The parameters to consider in defining a cooling 
schedule are the starting temperature, the equilibrium state 
(number of iterations carried out at each temperature), a 
cooling rate (the rate of temperature reduction), and the 
final temperature that defines the stopping criteria. In this 
study the initial temperature is determined in the following 
way [10]:   

0
maxT

ln
( )f xμ

φ
= ⋅
−

    (1) 

where it is assumed that φ [%]of the uphill moves, which 
are μ [%] worse than the initial solution f (x0), are accepted 
at the initial temperature level Tmax. The determination of 
Tmax from (1) has the advantage of being simple and direct.  
Geometric cooling rate can serve as a suitable function for 
deriving the set of temperatures required by the schedule in 
the distribution expansion problems [9],[10]. This function 
is defined as follows: 

k 1 kT Tα+ = ⋅      (2) 
where Tk and Tk+1 are temperatures at the iteration k and 
k+1, respectively, and α is a constant generally lying on the 
range (0.5-0.99) [10].    
The number of iterations to be carried out at each 
temperature depends on the problem dimension and is 
defined in the next sections. The SA algorithm is stopped 
whenever the temperature reaches a lower bound value (e.g. 
Tmin =0.01) , or whenever the solution is not improved for 
the defined number of consecutive temperatures. 

Determination of initial solution 
The initial network, which consists of the branches and 
nodes that already exist in the considered network and of all 
possibly new branches and nodes, is arbitrarily divided into 
the number of local networks (sub-networks/sub-problems). 
The possible way of generating local networks is presented 
in [11].  Each sub-problem is solved separately by applying 
the appropriately designed mixed integer linear 
programming algorithm (MILP), which is presented in [12]. 
This model is aimed to minimize investment cost while 
taking into account operational (thermal and voltage) 
constraints and load reallocation and upgrade possibilities in 
the network. By solving all sub-problems, the initial 
solution of the original problem is obtained. It should be 
emphasized that the “good” solution, i.e. the solution that is 
not far from the optimal solution, will be obtained by the 
proposed approach [11]. Local networks that exist in the 
initial solution are stored for further use as well as the set of 
all normally opened (NO) switches (tie switches) that 
connects the adjacent local networks.     

Determination of neighborhood solution  
In designing a neighborhood structure two contradictory 
criteria must be taken into account: exploration of the 
search space (diversification) and exploitation of the best 
solutions found (intensification). Promising regions are 
determined by the obtained “good” solutions. In 
intensification, the promising regions are explored more 
thoroughly in the hope to find better solutions. In 
diversification, nonexplored regions must be visited to be 
sure that all regions of the search space are evenly explored 
and that the search is not confined to only a reduced number 
of regions. It should be emphasized that defining the proper 
search strategy (intensification and diversification) is 
possibly the most critical issue in the design of SA 
heuristics [9].  
Intensification 
Intensification mechanism proposed here is based on well 
known branch-exchange algorithm [13], local network 
concept and MILP algorithm. The branch-exchange 
algorithm starts from the current solution at iteration k (at 
temperature Tk) and the neighborhood structure is formed in 
the following way. One NO switch (tie switch) is chosen by 
chance from the set of all NO switches (tie switches) that 
potentially connect adjacent local networks (sub-networks) 
that exist in the initial current solution at iteration k.  It 
should be noted that chosen NO switch connects not only 
the two adjacent local networks but also the two adjacent 
feeders belonging to those networks. Therefore, the branch-
exchange will be conducted on the set of switches that 
belongs to those feeders. Hence, the chosen NO switch will 
be closed and the adjacent one, which was closed, will be 
opened. Then, voltage and thermal constraints in this 
configuration (state) are checked out (tested) using the same 
method that is used in the MILP model [12].  If the 
constraints are not violated, the next branch exchange is 
performed in the same way and in the same direction as the 
previous one.  This process is repeated while constraints 
(voltage or/and thermal) are not violated or while all 
possible branch-exchanges are made on the considered 
feeders. If any of these conditions is fulfilled, then 
calculations are performed using the MILP algorithm for 
each of the considered local networks. It should be noted 
that the initial (starting) configuration of the two considered 
local networks is changed during the branch-exchange 
process. Therefore, the MILP algorithm is used to solve 
planning problem for each of modified local networks, 
starting from their initial states (states that they have in the 
initial network). In this way the new neighbor solution of 
the overall problem is obtained. This solution is accepted if 
its cost ((f(Sj)) is less than that of the current solution (f(Si)). 
If the cost of the neighbor solution is higher than the cost of 
the current solution, it still can be accepted with a certain 
probability. This ability to perform uphill moves allows 
simulated annealing to escape from local optima. The entire 
acceptance process at iteration k (temperature Tk) can be 
summarized as follows:  
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• ΔE= f(Si)- f(Sj); if ΔE > 0, then neighbor solution 
becomes current solution (Sj=Si); furthermore, if the 
cost of the neighbor solution is smaller than that of the 
current best solution, then it becomes the current best 
solution; the new local networks are stored along with 
the NO switches between adjacent local networks 

•  If ΔE < 0 then the folowing is applied: 
o If /e kE T−Δ > random [0,1], then neighbor 

solution becomes current solution; the new 
local networks are stored along with the NO 
switches between adjacent local networks 

o If /e kE T−Δ < random [0,1], then neighbor 
solution is not accepted. 

The intensification procedure described so far will be 
repeated for each not yet processed NO switch, which 
belongs to the set of NO switches at iteration k (temperature 
Tk). This procedure generates new solutions that are “close” 
to the initial current solution at temperature Tk. However, if 
all new solutions generated at a temperature Tk are accepted 
according to probabilistic criterion or no new solution is 
generated (accepted) then the diversification procedure 
(mechanism) will be applied.       
Diversification 
Diversification is an algorithmic mechanism that tries to 
alleviate the above mentioned problem by forcing the search 
into previously unexplored areas of the search space.  
In order to perform the diversification in the search space 
the neighbor structure is formed in the following way. 
Starting from the initial current solution (network state) at 
iteration k, the neighbor structures are obtained by 
constructing new local networks.In the current network 
state a single feeder is randomly chosen and the local 
network is formed that consists of the chosen feeder and its 
adjacent feeders, i.e. feeders that have normally open 
switches toward the chosen feeder [11]. Then, using the 
MILP algorithm, planning problem is solved for the 
obtained local network, starting from its initial state (state 
that the local network has in the initial network). In this way 
a neighborhood solution is generated. Acceptability of this 
solution is tested according to the acceptance rules defined 
in the previous section. The described procedure is repeated 
at iteration k for each of the remaining (not yet processed) 
feeders in the current solution, i.e. for all feeders that are 
not part of the already processed local networks. This 
procedure generates larger neighborhood structures, 
compared to that generated during the intensification 
process, and thus enables exploring of so far unexplored 
areas of the search space. After the diversification 
procedure is finished, in the next step (iteration) of the 
algorithm the obtained solution will be explored more 
thoroughly through the above described intensification 
mechanism.  

NUMERICAL RESULTS 
The proposed approach has been used to find solution with 

 
  Fig. 1. Test network 
 
minimal investment cost for 20 kV test network shown in 
Fig. 1. The test system consists of one supply node (supply 
substation), 44 existing branches (solid lines) and 14 
possibly new branches (dashed lines). In the supply 
substation three transformers 110/20 kV/kV exist 
(TRF1&2&3, branch 0-1) with the capacity of 31.5 MVA 
per transformer. It is assumed that substation capacity can 
be upgraded by adding maximally two additional 
transformers of the same size, with capital (installation) cost 
of 725 000 $ per transformer.  Also, the four size 
possibilities for constructing and/or upgrading each branch 
are considered. Table I shows physical and assumed unit 
cost data for each size. Assumed upgrading unit costs are 
given in Table II.  In Fig.1 capacity of each existing branch 
in the initial (present) period is shown in MVA (bold 
numbers) while the lengths of all branches are given in 
kilometers. It is assumed that there is a switch in each 
branch. Branches with normally opened switches (unloaded 
lines), which ensure radiality condition in the initial state of 
the network, are marked with "X" in the middle of the 
branch. Existing demand nodes (36) are marked with empty 
circles while 6 future demand nodes are shown as full 
circles. Forecasted load in each demand node is given in 
MVA in Fig. 1. Voltage in supply node (1) is assumed 20.5 
kV, lower voltage limit is set to 19 kV and power factor to 
0.95. Optimization package TOMLAB (CPLEX) [14] has 
been used for MILP calculations.  
Taking into account that the cost of the obtained initial 
solution is 1,818,300 $, φ=40% and μ= 30% the starting 
temperature, according to (1), becomes Tmax=595. The SA 
algorithm is terminated if solution is not improved after 3 
consecutive temperatures or if the temperature reaches 0,01 
(Tmin=0,01). The constant α in (2) is chosen to be 0,9.   
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Table 1 - Branch data 

Size 
[MVA] 

Installation 
cost 

[$x103/km] 

r 
[Ω/km] 

x 
[Ω/km] 

    5 60 0.383 0.23 
8 80 0.265 0.22 

10  100 0.191 0.2 
 14 140 0.123 0.19 

 
 
Table 2 - Upgrade costs 

 Upgrade cost [$ x 103/km] 
  To 

From 8 10 14 

5 72 91 120 
8  - 85 105 

10  - - 90 
 
The best solution of the problem has been found after 16 
global iterations (different temperatures) of the proposed 
SA algorithm. In those iterations the MILP calculations are 
performed 116 times. The cost of the best obtained solution 
was 1,326,500 $. This solution was found at temperature    
T= 390. 
The same problem has been solved by applying the MILP 
model [12] for the entire network from Fig.1, i.e. the 
problem has been solved without dividing the network from 
Fig.1 into a number of sub-networks. In this case the cost of 
the obtained solution was 1,326,500 $. Hence, the proposed 
approach generates the same solution as the mathematical- 
programming based model, i.e. it generates the global 
optimal solution of the considered problem. This result 
shows that proposed hybrid metaheuristic approach can 
noticeable improve the quality of distribution expansion 
planning process. 

CONCLUSION 
A new hybrid metaheuristic approach for expansion 
planning of distribution networks has been proposed. The 
proposed approach employs branch-exchange algorithm, 
local networks concept and MILP algorithm for generating 
initial solution as well as a number of alternative 
(neighborhood) solutions in each step of the SA algorithm. 
The SA algorithm is designed to ensure proper search 
intensification and diversification and thus to enable 
obtaining of high quality solutions. The presented results 
show that proposed approach has a potential to improve the 
quality of solutions of real size planning problems.  
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