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ABSTRACT 

This paper focuses on the detection and identification of 
bad measurements, especially before power system state 
estimation. Some methods are described in the literature 
dealing with the most popular state estimation techniques 
based on weighted least squares (WLS). Here the Principal 
Components Analysis (PCA) algorithm is used to track the 
raw measurements, detect and identify the principal forms 
of gross and historic errors. The results show how single 
and multiple bad data are cleaned from raw measurements. 
The correct data can be introduced then in the state 
estimation algorithm allowing a more efficient estimation. 

INTRODUCTION 

Knowing with precision the state of an electrical power grid 
may be a challenging task. Currently distribution networks 
are operated almost without online measurements; this 
limits the efficiency of the exploitation. The deployment of 
vast quantities of instrumentation in future Smart Grids, if 
properly handle, will allow having a complete knowledge of 
the current state of the grid, improving drastically the 
efficiency of the operation. Nevertheless, only 
instrumentation is not enough to assure a reliable 
knowledge of the real-time state of the power system, 
because limited instrument precision, measurement errors 
and communication problems, may give an incomplete or 
inconsistent view of the grid state. For this reason, it is 
always necessary fit measurements to power systems 
equations in a process called ‘state estimation’, which 
searches for an ‘average’ or ‘more probable’ state [1].  
 
It is well known that in this type of statistical problems 
(curve fitting problems) reliability of the result depends 
strongly on quality of raw data. Therefore, in order to get a 
consistent and reliable view of the grid state in future smart 
grids, raw data will have to be filtered and treated before 
feeding state estimation process and operation and 
management systems. This filtering, applied to future 
distribution smart grids that are massive in terms of number 
of elements and nodes, will foreseeable have to treat with 
vast amount of data in almost real-time. 
 
The presence of bad data in raw measurements is usually 
due to the meter equipment or communication errors. Two 
principal types of bad data can be considered: single and 
multiple bad data. They are largely explained in [1].  

 
The detection methods can work before or after the state 
estimation. The conventional method for state estimation is 
based on the weighted least squares WLS [1]. WLS is able 
to detect and identify single and multiple bad data by using 
the normalized residuals of the measurements, but it fails 
with conforming bad data. Post-estimation filters are widely 
studied in the literature, but not treated here. 
 
Best known pre-estimation methods are based in 
autoregressive filters [4]  or in Artificial Neural Networks 
[1], making a comparison between the measured value and 
the predicted value of measurements. 
 
This paper presents a preestimation bad data detection 
based on the Principal Component Analysis (PCA), 
reducing the time and cost in comparison with ANN 
approaches, that could be very tedious and expensive [1].  

PRINCIPAL COMPONENT ANALYSIS (PCA)  

The Principal Component Analysis (PCA) is a method for 
reducing the number of main variables of a system, losing 
the least information. The PCA find relations between 
variables that describe the main data behavior, and builds a 
statistical model that represents the system. PCA also uses 
statistical indexes to detect and identify bad data or 
anomalous data [1]. Next, the procedure is explained.  

Data matrix construction 
The system data is organized in a matrix, Z:(m x n), with n 
measured variables and m observations, at every time step, 
of these variables.

 

The matrix must be first scaled with zero 
mean and unit standard deviation.  

Eigenvectors and Eigenvalues  
The method is based on the covariance matrix 
decomposition into its eigenvectors. 
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The covariance matrix is diagonalized: 

 ˆ ˆSP P  (2) 

where P̂  is the eigenvectors matrix and   is the 
eigenvalues matrix. 
 
The eigenvectors are sorted from the highest eigenvalue to 
the lowest. The components with less importance are 
deleted, resulting a model with a principal components 
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retained and the P matrix “loadings” is obtained. Projecting 
the old variables through P, T matrix “scores” is calculated:  
 T ZP  (3) 

 1 1 2 2
ˆ ...   T T T
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In this paper, a graphical method called scree test has been 
used to obtain the number of principal components, where 
the eigenvalues are plotted in a simple line plot and the 
place where the smooth decrease of eigenvalues appears to 
level off to the right of the plot is founded [7]. 

Statistic indexes Hotelling T2 and Q 
Hotelling T2 index is defined as the distance from the 
principal components intersection to the measurement. T2 
defines an ellipse that contains the planes where the data is 
projected. The Hotelling T2 is deduced as follows: 
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Q index is the variation of the data values outside the 
principal components included in the model. The Q or SPE 
index is deduced as: 

 ˆ    where    TQ ee e Z Z             (7) 

T2 and Q limits 
Thresholds off statistic indexes like T2 can be calculated 
with a confidence α: 
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Similarly, the way to get Q limit is:  
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Contribution analysis 
When a limit is reached in an observation, it is possible to 
identify the original variables that are responsible of this 
anomalous situation. The method is able to know the 
contribution of each variable to the indices T2 or Q.  

Bad data replacement 
If the method only detects and erases the bad data, the 
system could become unobservable, and the state estimation 
would not be performed. With PCA it is feasible to replace 
a bad data observed at time t with another observation got at 
time t-1. This is especially useful when the observations 
arrive close in time at the control center. Also, the variable 
could be reconstructed using the rest of measurements [8]. 

TEST SCENARIOS   

Two scenarios have been considered to test the proposed 
preestimation technique: the IEEE 42-bus and a real 
HV/MV substation. 

IEEE 42-bus system 
The power system used for the simulations is the IEEE 42 
nodes showed in Figure 1. This net is radial, and 5 buses 
have been considered for testing. At each bus, the 
measurements of voltages, active and reactive power have 
been obtained (Va, Vb, Vc, Pa, Qa, Pb, Qb, Pc and Qc) by using 
EMPT software. Sub indexes indicate the power system 
phase, a, b or c, being the total number of measured 
variables equal to 45. Varying the load consumption it is 
possible to get 18 different operation points. Noise can be 
introduced, simulating the meter behavior, into the 
observations. Then, if we create 10 extra observations from 
the 18 original observations, a total amount of 180 different 
observations are used to build the PCA model.  

 
Figure 1. IEEE 42-bus system. 

HV/MV substation 
A real HV/MV substation has been considered as a second 
scenario, Figure 2. 
 

 
Figure 2. HV/MV substation. 

 
The substation has three voltage levels, 220 kV, 45 kV and 
15kV, and voltage, current, active and reactive power are 
measured at the different lines that feeds and are fed by the 
substation. In summary, 80 different variables are 
monitored. 
 
The measurement matrix has originally 8760 measurements 
of 80 variables (24 measurements par day during a year). 
Before applying the PCA method, an exploratory analysis 
of the data was carried out to not consider erroneous data to 
build the PCA model (loss of data, data that not follow the 
basic electrical equations, etc.). As a result of this 
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prefiltering, a measurement matrix with 4126 observations 
and 69 variables is finally considered in the algorithm. 

RESULTS 

IEEE 42-bus system 
 
Starting from the measurement matrix commented above, 
the PCA model is build retaining 44 principal components. 
Figure 3 shows the limit value T2 (red line) considered a 
confidence α = 0.95. 
 
The PCA method works satisfactorily with both types of 
bad data, single and multiple. In the measurement matrix of 
45 variables and 180 observations a bad data is introduced.  
The last row represents the last observation that has arrived 
to the center, so we suppose that past observations were 
been tested and were used to build the PCA model. For this 
reason, we only have to check the last observation. 
 
Single bad data 
The bad data introduced is the same measurement value 
plus ±20σ. The bad data is shown in Table 1.  
 

Table 1. Single bad data construction  

Variable 
Real 
value 

Sigma 
value  

Error 
+20· 

Bad data 

Va Bus 001 (V) 21737 58.9 1178 22915 
 
In Figure 3, the blue line represents the values of the index 
T2 for each observation. The last value corresponds to the 
observation with bad data included and it can be observed 
how index T2 goes beyond the limit, detecting the bad 
observation. 
 
In order to identify which variable has an error, the analysis 
of contributions is performed, which shows the weight of 
each variable in the value of T2. Figure 4 shows the 
contributions for the bad observation, identifying the first 
one as a bad data, which is the voltage of the first node. 
 

 
Figure 3. T2 index and T2 limit comparison  

 
Figure 4. Contributions of the variables to T2 index  

 
Multiple bad data 
A set of 5 bad data are introduced in this test, with the same 
characteristics that the single bad data. 

 
Table 2. Multiple bad data construction.  

Variable 
Real 
value 

Sigma 
value  

Error 
+20· 

Bad 
data 

Va Bus 001 (V) 21086 56.3 1126 22212 
Va Bus 014 (V) 18540 529 10580 29120 
Pa Bus 028 (W) 55645 988 19760 75405 
Pb Bus 028 (W) 99026 1491 29820 128846 
Vb Bus 034 (V) 19773 950 19000 38773 

 
First, the value of T2 for the last observation (with errors) is 
compared with the value T2 limit. As the limit is exceeded, 
the bad data is identified, Figure 5. 
 

 
Figure 5. T2 index and T2 limit comparison  

 
Next, the analysis of the contributions of each variable to T2 
could identify which variable has an error, Figure 6. In this 
example, the five bad data introduced in the observation are 
detected. However, the method should be iteratively 
applied, replacing the data with the biggest contribution for 
an estimated value (in this case, the last correct 
measurement). In this test, five iterations would be needed 
to identify the five bad data. Figure 7 shows the evolution 
of index T2 in each iteration. 
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Figure 6. Variables contribution to T2 index 

 

 
Figure 7. T2 max evolution of each iteration 

HV/MV substation 
PCA model is built and, by using the scree test criteria [7], 
the number of the principal components to be retained in the 
model should be 5 or 12. Observations with bad data were 
generated starting from the prefiltered measurements, 
adding an error in each variable of each observation. The 
error was generated by using the standard deviation of each 
variable, , as is shown in Tables 3 and 4. In this case, only 
single bad data detection is presented. 
 
Table 3 shows the performance of detection of the bad data 
generated when 5 principal components are retained in the 
model. It can be seen that for errors above 7· are 
successfully detected. Below this value, a percentage of bad 
data is not detected, for example, 58 % of the observations 
with errors equal to 6·. If the number of principal 
components is increased to 12, the algorithm is more 
sensitive to detect bad data. As it can be seen in Table 4, it 
can be detected errors equal to 4· (71% of cases tested). 
 

Table 3. Single bad data detection performance (5 PC) 

Error 
True 

Positive 
False 

Positive 
True 

Negative 
False 

Negative 

5· 0% 0% 100% 100% 

6· 42% 0% 100% 58% 

7· 100% 0% 100% 0% 

15· 100% 0% 100% 0% 

 
 
 

Table 4. Single bad data detection performance (12 PC) 

Error 
True 

Positive 
False 

Positive 
True 

Negative 
False 

Negative 

3· 0% 0% 100% 100% 

4· 71% 0% 100% 29% 

5· 100% 0% 100% 0% 

15· 100% 0% 100% 0% 

CONCLUSIONS 

PCA algorithm detects and identifies the principal forms of 
gross and historic errors before state estimation, allowing a 
faster and more reliable convergence. The PCA algorithm 
works satisfactorily with both types of bad data, single and 
multiple, and results show how single and multiple bad data 
are detected even when the deviation of the bad data is 
lower than ±4σ. The technique does not require information 
about the topology and parameters of the system, can work 
in real time, but the results show how the detection 
sensitivity depends obviously of the data that have been 
used to build the model. 
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