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ABSTRACT 

Capacitors and voltage series regulators are widely used in 
distribution systems to improve the system behaviour. A 
mixed integer, non-linear, constrained optimization 
problem can be formulated for an optimal allocation of 
these devices. This problem is frequently solved in 
deterministic scenarios with Genetic Algorithms. However, 
the distribution systems are probabilistic in nature, leading 
to inaccurate and in some cases conservative deterministic 
solutions. This paper proposes a new probabilistic method 
to solve the allocation problem. The method is based on the 
use of a Micro-Genetic Algorithm. Two different techniques 
based on the linearized form of the constraints of the 
probabilistic optimization model and on the Point Estimate 
Method were tested and compared to reduce the 
computational efforts. The proposed approaches were 
tested on the IEEE 34-node unbalanced distribution system. 

INTRODUCTION 

Shunt capacitors and voltage series regulators are used in 
electrical distribution systems for several reasons; the main 
are to reduce the power losses and to improve the voltage 
profile along the feeders. The shunt capacitors operate in 
discrete steps while voltage regulators are transformers with 
variable taps; the voltage change is obtained varying the 
position of the tap by a control circuit. 
This paper analyses the problem of contemporaneously 
choosing optimal locations and sizes for both shunt 
capacitors and series voltage regulators in three-phase 
unbalanced distribution systems.  
In the most general case, the optimal allocation of 
capacitors and series voltage regulators in unbalanced 
distribution systems can be formulated as a mixed integer, 
non-linear, constrained optimization problem. This problem 
is usually and successfully solved in deterministic scenarios 
by applying Genetic Algorithms (GAs) [1].  
However, the distribution systems are probabilistic in nature 
mainly due to the time-varying nature of load demands; 
then, inaccurate, and in some cases excessively conservative 
deterministic solutions can arise. As a result, a probabilistic 
optimization model seems to be most appropriate to take 
into account the unavoidable uncertainties affecting the 
problem solution.  
The classical Monte Carlo simulation procedure could be 
applied; however, the use of such a tool in the frame of a 
GA can require unacceptable computational efforts. To 
reduce computational efforts in evaluating the state and 

dependent random variables features, fast techniques have 
to be applied. In this paper, the linearization of the model 
constraints and the Point Estimate Method are used and 
compared. Moreover, a Micro-Genetic Algorithm is also 
developed and tested to speed-up the convergence.  
Similar probabilistic approaches were applied in [2] to solve 
the optimal location and size of only capacitors in 
unbalanced distribution systems. In this paper, the approach 
in [2] is extended to include series voltage regulators. 
The paper is organized as follows. The mathematical 
formulation of the probabilistic optimization problem of the 
sizing and siting of capacitors and voltage regulators is 
firstly analysed. Then, the techniques applied to reduce the 
computational efforts are described. Finally, some tests on 
the IEEE 34-node test feeder are presented and discussed. 

PROBLEM FORMULATION 

The optimal siting and sizing of capacitors and of series 
voltage regulators can be formulated as a mixed integer, 
non-linear, constrained optimization problem in which an 
objective function (e.g., the total cost including the losses 
cost) has to be minimized while meeting a number of 
equality constraints (e.g., power flow equations) and 
inequality constraints (e.g., admissible ranges of the bus 
voltages and limits on line currents). It can be formulated 
as: 

 
where: X is the system state vector (magnitudes and 
arguments of the voltages) and C is the control vector, 
related to fixed/switched capacitors and series voltage 
regulators to be placed at each bus.  
The capacitor banks are assumed to be fixed or switched 
types and are integer multiples of a capacitor unit. The 
series voltage regulators are assumed to come in discrete 
devices of pre-specified sizing. In addition, as far as 
capacitors are concerned, both placement and size are 
unknown; as far as the voltage regulators are concerned, 
only the placement is unknown since at each possible 
voltage regulator position a pre-assigned size is associated; 
this size is related to the maximum power demands of the 
loads downstream the voltage regulator position. 
Because of the time load variations, the best approach for 

min fobj(X,C) (1) 

ψ(X,C)=0 (2) 

η(X,C) ≤ 0, (3) 
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the solution of the capacitor and regulators allocations 
problem should consider the input variables (mainly phase-
load demands) to be random variables. Then, a probabilistic 
formulation of the problem (1) – (3) should be adopted to 
take into account the random nature of the power required 
by the loads.  
In particular, in this paper, the loads are not assumed to be 
constant; instead, their random variation is characterized by 
a normal distribution. In the next sub-sections the objective 
function and the list of constraints of the probabilistic 
optimization model are defined in more detail. 

The probabilistic objective functions 
In this paper, the objective function considered is the total 
costs (capacitors, voltage regulator and losses). In 
particular, the expected value (expected value of the losses 
cost plus the capacitors and regulators cost) is accounted 
for: 

where: CostC is the cost of the capacitors, CostVR is the cost 
of voltage regulators and µ [CostL] is the expected value of 

the cost of the losses, depending on the expected value of 
the power losses. 

The probabilistic equality constraints 
Each minimization problem solution should satisfy the 
equality constraints. That is, the three-phase probabilistic 
load-flow equations are expressed as: 

f (X) = U , (5) 

where: U is the input random vector (active and reactive 
load phase powers and active three-phase generation 
powers) and X is the state random vector (magnitude and 
argument of the unknown phase-voltages). 
Moreover, the equations linking the dependent variables to 
the state variables have to be included: 

D = h(X),  (6) 

where: D is the dependent variables random vector. In this 
paper, the dependent variables are the power losses, the line 
currents and the unbalance factors. 

The probabilistic inequality constraints 
Each optimization problem solution should satisfy the limits 
under consideration in terms of admissible ranges of the bus 
voltages, line currents and unbalance factors [2]. In 
particular, the line current maximum values should not 
exceed the line ratings, and the unbalance factors 95th 
percentiles should not exceed the allowable value provided 
by the power quality standards. The Standards, or operation 
rules, also provide the admissible ranges of the bus 
voltages. In this paper, we assume the Standard EN 50160 
as the reference; it suggests that under normal operating 
conditions, during each period of one week, 95% of the 
mean rms values of the supply voltage shall be within the 

range of ±10% of the declared voltage. 
The inequality constraints considered in this paper include1: 

( ) ( ) ,max3l l lI I Iµ + σ ≤                  ll Ω∈  (7) 

,max

,
,0

0.95

kd

d ik d i
f dk ≥∫                   pi 3Ω∈  (8) 
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V

i pV i pV

f dV ≥∫   

busNi ,,1K= , iphNp ,,,1K=  
(9) 

where: µ(Ιl) and σ(Ιl) are the expected values and the 
standard deviation of the current at line l , respectively; 

Il,max is the current rating for line l; Ωl is the set of system 

lines; kd,i is the unbalance factor at bus i; 
,kd i

f  is the 

probability density function of kd,i; kd,max 
 is the maximum 

unbalance factor; Ω3p is the set of three-phase busbars; 

,i p
fv  is the probability density function of  Vi,p, and Vmin 

and Vmax indicate the admissible range of voltages.  
Eventually, the probabilistic optimization problem to be 
solved consists in the minimization of the objective function 
(4) subject to the equality constraints (5), (6) and the 
inequality constraints (7) – (9). This problem can be easily 
solved by means of the solution procedure illustrated in next 
section. 

PROBLEM SOLUTION 

The probabilistic optimization problem formulated in the 
previous section, to obtain the optimal siting and sizing of 
capacitors and series voltage regulators, could be solved 
with GAs. However, when dealing with large-scale systems, 
such as in the case of unbalanced distribution systems, GAs 
can require tremendous computational efforts. This is 
particularly the case of the optimization problem (4-9) 
where a probabilistic characterization of input/output 
random variables is needed and, therefore, probabilistic 
techniques are required to solve the problem. 
First of all, to reduce the processing time while maintaining 
reasonable accuracy, a micro-Genetic Algorithm (µGA) can 
be used. This algorithm evolves with populations of only 
five individuals. 
The µGA creates an initial population whose individuals are 
characterized by the following variables: allocation nodes of 

                                                           
1 We assume  the maximum value of the current flowing in a 
generic line is the sum of the mean value plus 3 times the standard 
deviation. When the current probability density functions are of 
the Gaussian type, it corresponds to assuming the value with not 
more than 99.86% probability.  

[ ]obj C VR Lf Cost Cost Cost= + + µ , (4) 
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capacitors and voltage regulators, and number of elements 
of a pre-assigned size of capacitors.   
Once generated the initial population, the objective function 
(4) has to be calculated subject to the constraints (5) - (9). 
To do this, state and dependent random variables features 
have to be calculated.   
In the most general case, the Monte Carlo simulation 
procedure could be applied for evaluating the state and 
dependent random variables features; however, the use of 
such a tool - also in the frame of a µGA - can require 
tremendous and unacceptable computational efforts. Then, 
to reduce computational efforts, fast techniques have to be 
applied. In this paper, the linearization of the constraints 
and the Point Estimate Method [3] are used. 
Eventually (Fig.1), the results of either the Linearization 
Method or the Point Estimate Method are the inputs of the 
next genetic algorithm step that consists in the generation of 
the next population until the stopping criterion is reached. 
In the following subsections some details about the 
Linearization Method and the Point Estimate Method are 
recalled [2,3].  
 

 
Fig. 1 – Step of the proposed approach 

 

Linearization Method 
In reference to the equality constraints (5), the three-phase 
load flow equations are linearized around an expected value 
region. In this way, each random element of the state vector 
is a linear combination of the random elements of the input 
vector. It follows that the magnitude and argument of the 
phase-voltages can be approximated by jointly normal 
correlated variables whose statistical characterization can be 
effected in terms of the mean values and covariance 

matrices (note that the input load powers are normal random 
variables), which can be easily calculated with simple and 
well known closed form relationships.  
Similar considerations arise for the equality constraints (6). 
The analytical expressions defining such dependence can 
also be linearized, allowing these dependent variables to be 
expressed as a linear combination of the random elements of 
the state vector. It follows that the losses, current 
magnitudes, and unbalance factors can be approximated by 
jointly normal correlated variables whose statistical 
characterizations can only be effected in terms of the mean 
values and covariance matrices, once again obtainable with 
very simple and well known closed form relationships. 
Eventually, in the case of the linearization procedure, only 
the mean values and covariance matrices of the state and 
dependent random variables have to be known, because all 
of the involved random variables are jointly normally 
correlated variables.  

Point Estimate method 
The Point Estimate method has been applied in the field of 
the three-phase probabilistic power flow in [3], with 
reduced computational efforts, compared to the classical 
Monte Carlo simulation procedure. This method is similar 
to the Monte Carlo simulation procedure, since it uses 
deterministic routines for solving probabilistic problems; 
however, it allows us to obtain the first moments of the 
output random variables of interest through solving only a 
few deterministic three-phase power flows, compared to the 
enormous number of trials required by the classical Monte 
Carlo simulation procedure. Once the first statistical 
moments are known, it is possible to approximate the 
probability density functions of the variables of interest 
using analytical expressions, such as those based on the 
Gram-Charlier distributions. 
Different schemes can be applied in the frame of the Point 
Estimate Method; each scheme is characterized by a 
different number of deterministic three-phase load flows to 
be solved. In this paper, the 2m+1 scheme is used, since it 
provides the best solution in terms of accuracy and 
computational efforts. For more details about the method 
see [3]. 
 
NUMERICAL APPLICATIONS  

The problem of the sizing and siting of capacitor banks and 
series voltage regulators has been solved for the unbalanced 
IEEE 34-bus test system, illustrated in Fig. 2 [4], where the 
original capacitor banks and voltage regulators have been 
removed. The IEEE 34-bus test system has 80 system nodes 
and a voltage level of 24.9 kV. The only substation on the 
network is located above node 800 with transformers from 
69 kV to 24.9 kV. This system contains a mixture of single- 
and three-phase lines and loads. The complete set of 
network data and parameters can be found in [4]. 
In all the considered cases, the load demands are Gaussian-

µGA 
Initial population generation 

 

Output data 

Generation of new chromosomes 
using selection, crossover and 

periodic refresh of the 
population 

- State and dependent variables random 
vectors calculation using either Lineariz-
ation Method or Point Estimate Method 

 
- Obj function calculation and µGA 
convergence test 

Input data 

µGA 
 converges 

 

   µGA does not 
converge 
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distributed random variables. The mean values of the load 
powers are assumed to be the peak level reported in [4]. The 
standard deviation was assumed to be 10 %. 
 

 

Fig. 2 - IEEE 34-bus distribution test system [4]. 

In reference to the constraints, the maximum line currents 
were fixed at the ratings reported in [4], and the maximum 
value of the 95th percentile of the unbalance factor was 
assumed to be 3%. In reference to the voltage at each 
busbar, the 95th percentile of the voltage was assumed to be 
between 90% and 110% of the nominal value. The unit 
capacitors available at any bus were assumed to come in 
discrete sizes of 50 kVar. 
Table I reveals the solutions obtained by applying the 
Linearization Method and Point Estimation Method. We 
note that the objective function is normalized in reference to 
the value that it assumes when no capacitors and regulators 
are installed. 

 
TABLE I: OPTIMAL CAPACITOR AND REGULATOR LOCATION AND SIZE  

Method   Location and rating  
Objective 
function 

[pu] 

Linearization  
 

Capacitor 
banks 

450 kVar at bus #842 
450 kVar at bus #844 
150 kVar at bus #830 
100 kVar at bus# 822 

0.6895 

Regulators Bus # 828 

Point Estimate 

Capacitor 
banks 

450 kVar at bus #836 
300 kVar at bus #842 
150 kVar at bus #832 
150 kVar at bus# 816 
50 kVar at bus# 822 

0.6884 

Regulators Bus # 814  

 
From an analysis of Table I, it is clear that the objective 
functions in both methods are very close and significantly 
lower that those in absence of compensation devices. 
Obviously, the computational efforts of the Linearization 
Method resulted significantly lower that that of the Estimate 
Point method (approximately the 1,25%).  
Finally, Fig. 3 shows that the expected values of the phase a 
voltages obtained with the two methods depend on the 
position of the voltage regulator, but are anyway close 
(similar considerations arise for the standard deviations).  

 
Fig. 3 – Mean values of phase a voltages 

CONCLUSION  

Capacitors and series voltage regulators are widely applied  
in the electrical distributions systems to improve the system 
behaviour. 
In this paper, a new probabilistic method for the optimal 
sizes and location for both shunt capacitors and series 
voltage regulators in three-phase unbalanced distribution 
networks has been proposed. The method takes into account 
the time-varying nature of the distribution system load 
demands. 
To reduce the computational efforts, a µGA was applied and 
two different techniques based on a linearized form of the 
constraints of the optimization model and on the Point 
Estimate Method were tested and compared. The procedure 
was applied to the IEEE 34-node test system. 
This paper demonstrates that both methods provide good 
solutions in the examined cases. However, the Linearization 
Method requires computational efforts significantly lower 
than those of the Point Estimate Method. 
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