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ABSTRACT 
This paper proposes a stochastic-heuristic optimization 
approach for planning hybrid active systems or 
microgrids. Optimal sizing of such systems could be a 
challenging task particularly in presence of plug-in 
electric vehicles (PEVs). The presented case study deals 
with optimal sizing of an autonomous wind-fuel cell 
hybrid power system under impacts of PEVs. The 
stochastic part of the presented approach carefully 
considers a realistic level of variability and inter-
dependence structure for PEVs net load as well as wind 
power generation. Using a particle swarm optimization 
(PSO) embedded in the stochastic modeling offers a set of 
optimal sizes. Then, the planner would be able to use 
statistical indices and come to a decision that is 
advisable to be optimal with a greater confidence.    

INTRODUCTION 
Controllable electricity loads and storage devices have 
the potential to significantly and inexpensively increase 
the reliability of power systems, especially in hybrid 
systems with variable, unpredictable generation from 
renewable sources. Otherwise than the load-side manage-
ment, planning sufficient storage capacity is of a primary 
importance in assembling an autonomous micro-grid. So 
far, hybrid systems are preferred; in which a wind farm 
and/or a photovoltaic field are coupled to some storage 
equipment such as batteries or hydrogen-based systems. 
On the other hand, interest in electric transportation, 
particularly plug-in electric vehicles (PEVs), has 
increased dramatically in recent years [1]. One of the 
main potential utility benefits from PEVs includes the use 
of vehicle batteries as distributed storage. Therefore, as 
the design of a hybrid autonomous power system requires 
a number of subsystems to be considered, accurate 
representation of PEVs impacts on power distribution of 
such systems should also be considered. 

Sufficient understanding and representation of PEV load 
variations such as daily load shape as well as locational 
displacement have not fully addressed in traditional 
system planning methods. Indeed, PEV characteristics 
along with the anticipated high penetration of stochastic 
energy flows spatially distributed throughout the stand-
alone micro-grids should be optimized by using hybrid 
stochastic-heuristic simulation methods in the planning 
stage. In addition to the high penetration of stochastic 
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Fig. 1. A diagram of the hybrid system under study; both the 
generation side and the load side are distributed. 

behaviors within such systems, there is a strong 
dependence structure between load, generation and 
storage variable behaviors over a year. An advanced 
stochastic modeling of the system requires multivariate 
uncertainty analysis.  

In order for considering the impacts of both PEVs and 
wind power variation, this paper proposes a hybrid 
simulation procedure to the problem of optimal sizing for 
a hybrid autonomous power system. The developed 
algorithm consists of a subroutine by a particle swarm 
optimization (PSO) embedded in a multivariate stochastic 
simulation.   

The use of a stochastic simulation (Monte Carlo 
approach) is necessary for the variability of PEV load 
whilst settling on a multivariate modeling style is to 
capture the dependence structure of the planning dataset. 
It is employed the planning for net load concept [2] in 
the context of this multivariate stochastic analysis. The 
whole method intended to capture both spatial and 
temporal diversity of PEV integration as customers in 
varied locations purchase PEVs of varied types and 
charge them differently.  

The optimal sizing problem is investigated for a wind-
fuel cell hybrid system (Fig. 1) having an arbitrary level 
of penetration with PEVs. Using of hydrogen in the 
hybrid system provides a higher reliability. Optimization 
of all modeling outcomes using PSO algorithm results in 
a cluster of optimal sizes which provides a wide 
knowledge of all possible upshots stemming from 
multivariate PEVs/wind uncertainty. The final mostly 
optimal sizes can then be calculated based on the relevant 
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statistical moments of the size sets. These sizes are 
advisable to be optimal with a greater confidence. This 
study is performed utilizing a dataset for a real site in 
Iran. 

HYBRID ACTIVE SYSTEM WITH ELECTRIC 
VEHICLES 
The hybrid system involves some wind turbines, some 
fuel cells, some electrolyzers, and some hydrogen tanks 
and assumed to be an autonomous small power system 
according to Fig. 1. The system’s power output should 
meet the demand and the costs are minimized. The 
objective function and operation strategies for this grid-
connected hybrid system are somewhat identical to the 
autonomous system of [3]; so, they are not fully 
described in this short paper to keep focus on the main 
issue. The main difference is adding some PEVs to the 
consumers’ load share. 

Optimized solution is achieved by minimizing total 
system costs throughout the whole of its useful lifespan 
(20 years), when those costs are referred to or updated for 
the initial investment; that is called Net Present Cost 
(NPC). The NPC of the n-th component can be calculated 
via below equation: 
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Where, Nn is the number/rating, CCn is the capital cost, 
RCn is the replacement cost, and OMCn is the operation 
and maintenance cost, all for n-th equipment (n=1,2,…,4 
represents wind turbine, fuel cell, electrolyzer, and 
hydrogen tank, respectively). Moreover, R is the project’s 
lifespan, and IR is the so-called real interest rate that is 
assumed 0.08. Other parameters, APW and K are annual 
payment present worth and single payment present 
worth, respectively, defined as 
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where, y is the number of times each component replaced 
and Ln is the lifespan of each component. Therefore, 
based on the definition of NPC by (1) along with the 
constraints [3], a classic form of the multi-objective 
optimization problem could be written as 
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Indeed, the weighted sum method, used here consisting 
sum of the individual system devices’ NPCs, is one of the 
most common methods for solving multi-objective 
optimization. 

Considering PEVs’ aggregated load in this problem could 
be presented by inserting its impacts on the net load of 
the system through a multivariate modeling of its 
behaviour. The net PEV loads provide an indication of 
the basic impacts on utility load patterns and provide 
some quantitative information such as the change in 
utility load factor, such as the need for additional 
capacity. Moreover, system load is variable; besides, 
renewable generation varies. 

Distribution systems currently are designed under the 
assumption of power flow from a substation to end-use 
loads. Depending on the penetration level, PEVs can 
cause a reversal of power flow through the distribution 
system, and this is the likely source of problems. 
Correlated load and PEVs’ controlled behavioural 
scenarios are needed to predict the maximum amount of 
reverse power flow. 

On the other hand, distribution network rely on a 
“coincidence factor of loads” for sizing all of the 
system’s components. Indeed, the loads are not likely to 
operate deterministically simultaneous, and the planner 
takes advantage of this by sizing the component for the 
expected coincident load rather than the maximum load 
[2]. The probability of coincident operation of PEVs is 
much higher, because there are some specific times in 
which the customers would like to plug-in their vehicles. 
Anyhow, the actual electricity demands associated with 
PEV controlled charging are quite modest compared to 
normal electricity demands. Controlled charging would 
even create additional benefits as some kind of a demand 
side management programs. Such a controlled charging 
yet, with 5% randomness is employed in this paper. The 
net load of the hybrid system with and without PEVs is 
illustrated in Fig. 2 by two histograms.  
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Fig. 2. System net load distribution. The partially controlled 
charging is assumed when considering PEVs. 

Modeling dependence structure of the planning data set 
(net load within two scenarios and wind speed) is 
illustrated in Fig. 3 in the form of an autocorrelation 
matrix. Each pixel set gives the correlation between two
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Fig. 3. Modelled dependence structure of the planning data set over a year: (a) Net load without any PEV demand; (b) Net load with 20% 
partially controlled PEV demand assuming DSM; and (c) wind speed. Such a multivariate modeling could be used to capture the impacts of 
PEVs and wind power in the planning/sizing stage. 
 

horizons, and hence ones for each horizon on the 
diagonal. It is also interesting to note that the 
annual/seasonal pattern of load and wind speed is 
revealed considering Fig. 3 (note the distinguishable 
square areas); which conforms to an accurate modeling as 
presented. These probabilistic models allow for simulat-
ing above-mentioned characteristics which are employed 
by the proposed stochastic algorithm in the next section. 

AN OUTLINE OF THE STOCHASTIC-
HEURISTIC ALGORITHM 
The general outline of the presented analysis is illustrated 
by a flowchart in Fig. 4. The scenarios are considered in a 
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Fig. 4. Flowchart of the proposed hybrid approach. 

weekly time horizon. By the time the net load 
probabilistic model considering impacts of PEVs is 
obtained and corrected for bias and standard errors, each 
scenario is fed into an optimization loop to calculate the 
most optimal size set for that scenario. Doing this for all 
scenarios results in a cluster of optimal sizes that could be 
further analyzed by a correlation analysis.   

It should be mentioned that the multivariate modeling in 
the previous section is able to provide a large number of 
scenarios. These scenarios, all together, represent the 
long-term behaviour of the PEV load and wind time 
series considering uncertainty and could be used for 
planning purposes. This provides a scenario-based 
forecasting. The application of point forecasting methods 
in this paper (even the methods that consider uncertainty) 
is irrelevant because of both the consideration of PEVs 
and the long-term planning.  

 RESULTS 
The results of the whole stochastic optimization process 
using 12,000 samples/scenarios are depicted by Figs. 5 
(a)-(f) as the distribution of optimal point differences 
between the scenarios with 20% PEV penetration and 
scenarios with no PEV. The latter case is identical to 
those considered in [3] by just considering the load model 
in Fig. 3(a). The optimal sizes of the wind turbine, 
electrolyzer, hydrogen tank and fuel cell for the scenarios 
with no PEV are equal to 89, 2330, 3140, and 470, 
respectively; and the optimal cost is $16.16M. These 
quantities would be changed when considering 20% PEV 
load demand according to Figs. 5(a)-(f). Assume the 
mean values are used as optimal decision, then, 
comparing two cases with and without PEVs shows an 
improved optimal solution with a lower total cost when 
there are some PEVs in the system. This is 
understandable since the PEVs assumed to be used in a 
somewhat controlled manner to improve DSM indexes.     

Any decision other than using mean values could be 
made based on more advanced analyses of the results. 
Another illustration of the results could be some kind of a 
matrix plot in Fig. 6 which reveals any correlation 
between every planning parameter. From the statistical 
point of view, such information could be very useful to 
investigate the relationships between different optimal 
points with which the final decision would be made.  

Furthermore, the scatter plots in Fig. 7 shows the optimal 
cost and sizes of wind turbine, electrolyzer, tank and fuel 
cell from top to bottom, respectively for the 12,000 
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scenarios. The simulations of optimal cost have been 
sorted from the highest value to the lowest one. This 
order has been kept to plot other traces for size sets. As a 
case in point, these plots can be employed as some 
decision stuff like Pareto optimal movement. Pareto 
principal, as a well-known criterion in multi-objective 
optimization, utilizes Pareto optimal set to depict the 
trade-off between the objectives. The decision maker can 
then select the most preferred solution out of the Pareto 
optimal set. 
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Fig. 5. Probability distributions of differences when the results of 
scenarios without PEVs are subtracted from the results of scenarios 
with 20% PEV penetration.  

 
It is also inferable from Fig. 7 that if the decision maker 
decides to have perfect (unit) supply reliability, even with 
uncertainty, an overdesigned system would be necessary 
with an optimal cost of approximately $30M (in case 
there is no PEV, this would be $50M). Nonetheless, a 
worthwhile optimal selection would be the mean values 
of all scenarios at the cost of reducing the reliability, but 
to an acceptable level most of the time.   

CONCLUSIONS 
A new strategy is proposed to take proper account of 
PEV proliferation in the optimal sizing problem for a 
stand-alone hybrid power system. A PSO-embedded 
stochastic simulation is developed and several statistical 
analyses are performed prior to and after the simulation 

aiming at realistic modeling of the wind power and load 
demand data. A set of optimal sizes are obtained as final 
outputs which is then analyzed to provide a measure for 
making the optimal decision. Other relationships could 
also be implied and might be used to help the decision 
maker in a more appropriate optimal system planning.   

 
Fig. 6. Visualizing the correlation matrix structure of results. The 
direction of correlation is depicted by red lines.  
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Fig. 7. Simulated size sets for all 12,000 samples for the optimal 
cost, wind turbine, fuel cell, electrolyzer, and hydrogen tank 
respectively from top to bottom (red bold lines are a mean trend of 
data). The descending order of optimal cost has been kept for 
plotting optimal size sets. 
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