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ABSTRACT 

A principal objective of electricity regulators when 
establishing electricity markets was to decrease the cost of 
electricity through competition. However, this possibility is 
quite limited for some customer segments (small and 
medium customers): they are not able to reduce and 
manage their energy costs because they can have high 
opportunity costs (the time they should spent in 
understanding the market and submit the energy bids and 
offers and, finally, the processing of market information).  
The aim of this paper is to propose a responsive load 
economic model in order to manage the participation of 
customers in standard Demand Response programs. This 
procedure could help energy aggregators to integrate small 
customers in Electricity Markets and overcome technical 
and educational barriers and risks. 

INTRODUCTION 
The literature largely addresses the benefits of capacity 
markets relative to energy markets: for the customer a 
higher payment for availability of its capacity resources; for 
the Independent System Operator (ISO) the increased level 
of reliability, a reduced volatility, lower investment costs 
and mitigation of power markets. An example of Capacity 
Markets expansion is PJM and New England (USA) [1]. 
The auctions’ results of these markets support the argument 
that Forward Capacity Markets foster competition (1800 
MW of DR resources are interested by this new market in 
the first auctions). The paper explores through simulation 
with Physically Based Load Modeling (PBLM), the 
customer bidding possibilities in energy and capacity 
markets. Most customers do not sign long term contracts 
with the aggregators due the uncertainty about their 
business longevity, opportunity costs and the frequency 
with which they would be activated in four years. This 
social pattern creates a special risk for load aggregators. 
Due to this fact, the aggregators must be compensated for 
taking on the financial risk and this could increase the price 
at which Demand Response (DR) bids into the auction 
while decreasing the amount of DR, and creating a technical 
barrier for DR in these emerging markets.  

By the use of the models proposed in the paper, the 
aggregator and ISO can simulate the behavior of customers 
when different elasticities, incentives and penalties are 
applied, considering the customer and loads that best fit the 
aggregator or system capacity objectives under each 
environment. These simulation results can improve the load 
profile characteristics as well as customer economy while 
decreasing peak prices. The performance of the proposed 
model was investigated through a numerical study using 
NE-ISO market data. 

CHARACTERISTICS OF THE CUSTOMERS 
A group of residential customers in the North of Spain have 
been selected for simulation purposes. This group of 
customers corresponds to real residential customers in 
Europe, and the average rated power per customer ranges 
from 4 to 10kW. The temperature in winter ranges from -5 
to 10ºC. Figure 1 shows the winter and summer loads for 
two selected workdays in the primary feeder (transformer 
centre, CT) that supplies power in 400V to the customers. 

0 4 8 12 16 20 24
0

50

100

150

200

250

300

350

400

Time (h)

Po
w

er
 (k

W
)

Winter
Summer

 
Figure. 1. “Typical” Load Curves in CT(winter/summer). 

 
End Uses for a residential “average” customer have been 
estimated according to European Union EU-27 data (Joint 
Research Centre, 2007, [2]). Main end uses according to 
energy consumption are: heating systems (18.7%), Cold 
appliances (15.2%), Lighting (10.5%), Water heaters 
(8.6%), Air Conditioning (4.4%), i.e. typical targets for DR 
programs in this segment, also in USA, see [3]. In these 
customers heat storage is not unusual due to government 
incentives in last decade. Notice that in Mediterranean 
regions (in Europe), the Air Conditioning load represents a 
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higher percent, but we have assumed those percentages [2] 
to better represent for simulation purposes a continental 
climate (Europe, East Coast in USA) where heat storage is 
possible and cost-effective. 

STRUCTURE OF THE MODEL 
The proposed model has five blocks: customer elasticity, 
peak price forecasting, a responsive load economic model, 
the classification of the load according its suitability for 
response, and the modeling of load response. We will 
explain the data and assumptions for each of these parts of 
the model in next paragraphs. 

Step 1 : Customer elasticities 
First submodel represents the changes in customer’s 
demand with respect to changes of the electricity prices in 
Day-Ahead and Real-Time Markets through the use of own 
and substitution elasticities found in the bibliography. 
Own price elasticity Eii : the percentage of change in 
demand (Di) at time t=i as a result of a percentage of change 
in the price (Pi) at the same time (remark: own elasticity 
should be a negative number): 

E D D Di
P Piii i( ) /

/
=
Δ
Δ

 (1) 

Elasticity of substitution Eik: is a measure of the percentage 
of change in the ratio of the peak (hour i) to peak-off (hour 
k) demand as a result of a percentage of change in the ratio 
of the peak to the off-peak prices (this elasticity should be a 
positive number).  

E D D Di
P Pkik i( ) /

/
=
Δ
Δ

 (2) 

It is important to consider that price elasticity of demand is 
non-linear and the responsiveness to price changes is not 
symmetrical, i.e. Eik≠Eki.  
It is necessary to clarify that this change in demand from 
time i to time k can be due to energy payback (recovery of 
energy that was not supplied before the load is switched on 
again after a DR response in the time i. This energy is 
necessary to reach the level of service previously lost, for 
example in HVAC loads) or can be produced by a change in 
the time of use of the load (for example the use of a water 
heater (WH) or a dishwasher (DW)). 
For this work we have considered data from USA, Australia 
and European Union extracted from pilot studies in 
small/medium customers. For example, in 2006 Federal 
Energy Regulatory Commission, reported some data about 
the value of the elasticity of substitution analyzed in some 
large customer segments ([12], RTP Tariff in Niagara 
Mohawk Co). These segments are high demand customers, 
but some insight appears about commercial and retail 
segments (elasticity ≈ 0.05). California Critical Peak Pricing 
Project [4] presents elasticity studies for small and medium 
residential/commercial customers (20kW, 200kW 
segments). These own elasticities are higher when an 
automated system for response is applied [4]. Aubin has 
studied [5] the effect of “tempo” tariff (Eléctricité de France 

EdF, France) in customers. The conclusions of this research 
are that RTP tariff improves the welfare of the majority of 
customers participating in the experiment and achieves 
significant demand reductions (up to 45% in high price 
days). Aubin concludes that the peak price elasticity is 
about -0.79 and an off-peak elasticity reaches +0.28. These 
data and other studies for EU countries [6] are used for 
simulation purposes to built a theoretical elasticity E24x24 
matrix for a residential customer group. 
 

Step 2: Peak-price forecasting 
There are many papers in the bibliography concerning the 
forecast of price series, but it requires data information from 
nearly 45 previous days in order to forecast one or two 
weeks of daily prices (see [7]). 
We propose an alternative for forecasting energy price 
series based on what happened in the markets the previous 
day. The procedure of clustering and forecasting is 
proposed in a previous paper [8] and is the following: 
• We consider two-consecutive-day price series; a series 

of size 48 corresponding to the price of the 48 hours of 
the two consecutive days. In the first stage, we classify 
and extract patterns of the two consecutive days from 
some annual Real Time Locational Marginal Price 
(LMP) database, corresponding to the previous year. 

• Then, we identify each daily-price series (current year) 
with one of the price patterns obtained in the first stage 
(previous year): at the end of a day, the daily price 
series (size 24) is identified with one of the price 
patterns comparing the first 24 hours. Then the price 
series of the following day (day-ahead forecasting) is 
estimated by hours 25 to 48 of the price pattern 
selected. 

Obviously, the objective of the method is not to provide an 
accurate estimation for each day, but helping customers or 
aggregator to take decisions through a model.  Figure 2 
show the high-price cluster (48h series) used to forecast 
high prices periods. The data correspond to New England 
(USA) 2006 Real Time LMP price series [1]. 
 

 
Figure 2.  Estimation values and confidence bands for Real Time 
Prices (high-price periods, cluster 1). 
 

Step 3: Responsive load model: economic viewpoint 
The economic model is based on a previous work by 
Aalami [9], but modified, fixed in some details and, in 
general, has been improved with real data for prices, load 
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and elasticities and with the use of PBLM response models. 
This model is based in classical optimization procedures 
and the objective is to maximize the customer’s benefit. 
When the user is enrolled in Demand, Load, Capacity or 
other DR programs, the benefit B will be the income 
(economic and/or service) during hour i from the use of Di 
kWh. Indeed, there are additional incomes, for example 
incentives (IN, when response is effective) and penalties 
(PEN, when response fails over firm service level, FSL, 
agreed with ISO) for participating in some DR program 
available on modern energy/capacity markets. This is done 
through a change in customer demand (∆Di). 
Mathematically, the global benefit GB is done by the 
formula: 
GB B D D P D IN FSL D PENi i i i i i i= + + − −( ) ( ) ( )Δ Δ Δ    (3) 
The benefit function B is the quadratic benefit function 
proposed by Schweppe in [10]: 

[ ]B D B D P D D
D D

E Di i i i i
i i

ii i
( ) ( )= + − +

−⎧
⎨
⎩

⎫
⎬
⎭

0 0 0 0
0

0
1

2
  (4) 

where D0i and Di are demands before and after a response is 
cleared at time i. B0i is the base benefit at time i, without 
any DR policy, i.e. the economic value of the service 
provided by load (heat, cool, processing, mass transport, 
etc).  
By maximizing the above benefit B in the equation with 
respect to new demand at time i (Di) if a demand policy is 
accomplished, we obtain: 

P I PEN P
D D

E Di i i i
i i

ii i
+ + = +

−⎧
⎨
⎩

⎫
⎬
⎭

0
0

0
1

2
   (5) 

It is important to take into account that IN and PEN values 
are a customer incentive and act like a price through 
elasticity, in the same way Pi does. 
Moreover, the customer demand for Load-Response 
Programs (LRP) is evaluated with the expression: 

( )
D D E

IN PEN P
Pi

LRP
i

LRP
ii

i i

i
= +

+ −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0
0

0
1 i   (6) 

. 
And for Price-Response Programs (PRP): 

D D E
P P

Pi
PRP

i
PRP

ii
i i

i
= +

−⎡

⎣
⎢

⎤

⎦
⎥0

0

0
1    (7) 

If a possible change of demand from on peak (time i) to off 
peak (time k) is available (depending on customer load 
capacity), the new customer demand should take into 
account the change of load from peak to off-peak hours. For 
example for PRP policies and considering the substitution 
elasticity Ei, the load shifting to time k from time i (k←i) is: 

D D E
P P

P
k ik i

PRP
i

PRP
ik

k i

i
← = +

−⎡

⎣
⎢

⎤

⎦
⎥ ≠0 1 ;   (8) 

And consequently the load reduction at time i due to load 
shifting to time k (k←i) is: 
D D Di

PRP
i

PRP
k i
PRP= − ←( 0 )                            (9) 

For example, by combining equations (6-10) for PRP, we 

will obtain the economic response model as following: 
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Where LReu, load recovery for a specific end-use is a real 
number [0, 1] characteristic for each end-use and DR 
response policy. If there is not any energy payback, LR=1. 

Step 4: Load classification for Demand Response 
 
The possibility of an electric load to participate in DR 
depends on the ability of the user to switch off, reduce 
partially or change the time of the load demand while 
maintaining a minimum level of service for such a load 
(comfort or process) [11]. Besides, if the load is being used 
for DRP, this demand is unable to be used for LRP, 
according to market rules and procedures. For instance, this 
restriction is applied in New England, see [12].  
Several factors are relevant to classify load capability for 
DR: Final service supplied by the electric load (thermal, 
illumination, mechanical, electronic…), storage capacity 
(process, thermal or electrical), and the rate of load 
switching (ON-OFF times), dual energy supply (gas for 
HVAC, backup for electronic devices) and load dispatch 
facility. 
The storage capacity is a critical factor because it drives the 
continuity of load service and consequently the possibilities 
of response (depth and duration of response). This factor is 
related to the ability of the whole process to store some kind 
of energy (electrical, thermal or in form of hydrogen) or 
some other “manufactured products” (process) that can be 
used in any other time. The higher the storage capability is, 
the higher the possibility of load re-scheduling over a 
broader time period is. For instance, conventional HVAC 
loads need energy payback to recovery the service 
(temperature) immediately after the response period. A 
heating or cooling load with storage (or with dual supply, 
i.e. gas/electricity) does not need the electricity to maintain 
service because they use the energy stored in the reservoir 
(or they change from electricity to gas supply). Moreover 
these loads can recovery their reservoir level some hours 
after the response (an example of substitution elasticity). 
It is important to explain here that the general assumption 
(often assumed in the bibliography) that energy demand of 
end uses do not change when a load response is done is an 
important error [13] and it reduces the validity of results. 
For instance, we can consider the lighting end use. It has 
not sense the “recovery” of this demand in other periods 
(i.e. from night to daylight). They do not recover the energy 
saved in control periods. For other end-uses, savings from 5 
to 20% have been reported during the response/payback 
period, ant this fact is often used by programmable 
thermostats to save energy.  
Load demand behavior is also of interest. Load pattern of 
consumption can be discrete or continuous. A continuous 
demand to accomplish the service provided by the load may 
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result in a continuous electricity consumption (this is the 
case of lighting loads or computers) or in a discontinuous 
consumption (for example in a refrigerator or in most of Air 
Conditioning devices where the operating state is thermostat 
controlled). From the previous considerations and the loads 
normally available in residential segments, a first 
classification according to their suitability for a flexible 
control is proposed in table I. This table also states the 
availability of loads for Forward Capacity Markets (FCM), 
and the possibility of response and payback (the forecast 
time of scheduled response is t=i). 
 

Elasticity Energy 
Payback 

Load FCM 

Own(i→i) Cross(i→k) i+1 k 
HVAC Y Y Precooling 

Preheating 
Y N 

Light. Y Y N N N 
Fridges Y Y N Y N 
Heat 
Storage 

M Y Y M Y 

Dual 
Loads 

Y Y N N N 

Water 
Heater 

M Y Y M M

Dish 
Mach. 

M Y Y M M

Table I. Demand Response Availability for different residential 
end-uses (Y: available, N: not available, M: indifferent) 
 

Step 5. Modeling of Load Response 
PBLM methodologies are the most promising approach for 
the load modeling problem applied to DR evaluation. A lot 
of models for HVAC, Water Heaters and ETS devices are 
described in the scientific bibliography [11] or are available 
from energy agencies, for example EnergyPlus or E_Quest 
(DoE-2,Dept. of Energy, USA [14]). The interest of these 
models is to forecast load behavior when external actions 
are considered –duty cycle modifications, voltage 
reduction- to achieve a targeted load curve. The modeling 
process for small customers has two steps: the first to 
achieve an individual, the second to aggregate these 
elemental models up to reach a minimum controllable 
demand size which allows the participation in the markets 
(the threshold is usually fixed around 100kW). 
The proposed elemental model relies on information about 
physical load characteristics –heat transfer processes-, 
internal control mechanisms –thermostat-, usage and 
environmental parameters. The second step has consisted in 
aggregating the response of elemental loads. This problem 
consists on obtaining approximately the expected value of 
the total power demand due to the group [11]. To give an 
example, to be used in the next paragraph, we simulate the 
response of a set of HVAC 2kW loads. The internal 
temperature (thermostat setpoint) is 20.5ºC, and the outdoor 
temperature 6ºC. The average unforced duty cycle m(t) (the 
ratio of on time versus on+off times) obtained through 

simulation is 72%. With the software described in [11] we 
have performed some simulations to evaluate the 
performance of response. The results are shown in table II. 
 

u(t) 
(%) 

DR 
Period 

Payback 
time 

Peak 
Clipping 
(%) 

Energy 
Savings 

Comfort 
Temp 
(ºC) 

25 i to i+4 i+5,i+6 65 19% 15 
33 i to i+4 i+5,i+6 54 15% 15.9 
50 i to i+4 i+5,i+6 22 8% 18 
66 i to i+4 I+5 7.8 2.5% 18.8 
Table II. Demand Response characteristics of HVAC end-use 

The variable u(t) is the forced duty cycle during DR response. To 
evaluate the available load reduction in FCM auctions, we propose 
to use the following formula: 

FCMB RatedP m t u teu

k customers
k
eu= −

∈
∑ *( ( ) ( ))        (11) 

Where FCMB is the bid presented in FCM through a 
demand reduction of an specific end-use in group of 
customers. In our group and for HVAC loads, different 
levels of capacity are available. A higher level (i.e. a lower 
u(t) level) means a higher reduction in load service (comfort 
temperature), and this can produce a fail in the response and 
economic penalties imposed by ISO. 

SIMULATION RESULTS 
A simulation of residential response through an aggregator 
in energy and capacity markets has been performed and is 
described in this paragraph. This aggregator manages a 
number of residential users (see previous paragraph) high 
enough (up to 10 CT with loads very closed to the load 
shown in fig. 1) to obtain a minimum level of response of 
100kW (a 20% of customer with the ability of respond to 
the aggregator is assumed).  
The average price for 2007 winter is computed. At the same 
time, a forecast of high prices is obtained based on 2006 
prices (structure of the model, step 2). When a high price 
period is forecasted during the previous day (see figure 3), 
the aggregator demands and manage a response from their 
customers sending a warning and price information. 
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Figure 3. Average price and high price forecast 
 
HVAC, Water Heater (WH), Dual Fuel (DF) and Heat 
Storage (HS) loads are divided into control groups, with 
similar size and the aggregator energy management system 
is programmed to apply different ON/OFF cycling control 
policies (HVAC), shifting of demand (WH, HS), change of 
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supply (DF) during the high prices periods. The actual 
consumption for the customer with response ability is 
presented in figure 4 (curve “with DR”). “DR own” and 
“DR cross” curves represent the demand clipping (∆Di, 
equation (7)) and demand shifting and energy 
payback/recovery (Di←k). 
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Figure 4. Original and modified demand due to PDR. 
 
The overall consumption for a residential group CT is 
represented in figure 5 with the dotted line. A benefit of 9% 
in energy cost is achieved by this change in demand pattern.  
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Figure 5. Change in the load. Level: Transformer Centre 

CONCLUSIONS 
The right operation of electricity markets is quite doubtful 
without the active participation of the demand-side.  A 
methodology, suitable for small customers with an 
aggregator is presented in this work.  
A discussion of the main elements of the model that drive 
and simulates DR participation is first presented in the 
paper. The methodology, well suited for the participation in 
energy and capacity markets, is presented afterwards, 
methodology that is based on the detailed knowledge of the 
load elements involved in the customer load mix (end-uses).  
The proposed methodology is applied to the case of a group 
of residential customers in Spain assuming the hypothesis 
that they have access to advanced DR policies (like the DR 
policies of PJM or NE-ISO markets). The simulations 
performed are oriented both to define the demand offers as 
well as to simulate the results of its implementation. 
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