
 C I R E D 21st International Conference on Electricity Distribution Frankfurt, 6-9 June 2011 
 

Paper 0718 
 

 

Paper No  0718   1/4 

USING A MULTIVARIATE DOE METHOD FOR CONGESTION STUDY IN 
DISTRIBUTION SYSTEMS UNDER IMPACTS OF PLUG-IN ELECTRIC VEHICLES 

 
 

 Masoud ALIAKBAR GOLKAR Hamed VALIZADEH HAGHI 
 K. N. Toosi University of Technology – Iran K. N. Toosi University of Technology – Iran 
 golkar@eetd.kntu.ac.ir valizadeh@ieee.org 
 

ABSTRACT 
In emerging active distribution networks there is a need to 
introduce advanced tools for studying new framework. 
Indeed, the traditional studies might not be able to take the 
impacts of new system components such as electric vehicles 
into account well. Therefore, it seems a good idea to exam-
ine the possibility of employing more advanced hybrid tools 
for studying active networks. This paper provides the 
groundwork for a new design of experiment (DOE) method 
as employed to the congestion study in active distribution 
networks considering impacts of plug-in electric vehicles 
(PEVs). The new DOE method utilizes a multivariate mod-
eling of the huge database of all possible scenarios by using 
copula approach. Then, the most optimally reduced data-
base could be used for performing power flow calculations 
followed by a correlation analysis of the results. The final 
outcome is about knowing which lines will be congested at 
the same time and to what extent under impacts of PEVs. 

INTRODUCTION 
Planning distribution systems requires decision tools to 
determine which part of the network should be developed in 
the future. In the context of the emerging active distribution 
networks, undertaking a partial development in the planning 
stage is further encouraged due to the proliferation of plug-
in electric vehicles (PEVs). If a network development deci-
sion is not taken at the right time, congestion may appear on 
the grid. On the other hand, assuming unnecessary network 
developments may be economically abortive. 

Monte Carlo simulation, naturally, provides a very compre-
hensive tool used to evaluate potential impacts of PEVs 
based on probabilistic projections of certain aspects of PEV 
penetration. The Monte Carlo approach is intended to cap-
ture both spatial and temporal diversity of PEV integration 
as customers in varied locations purchase PEVs of varied 
types and charge them differently. Therefore, the simula-
tions are composed of probabilistic assignment of PEVs to 
the distribution base case [1]. Each PEV is randomly as-
signed a location, type, and daily charge profiles based on 
the provided probability density functions for each charac-
teristic. In this manner, multiple probabilistic scenarios are 
generated from the system and probability density func-
tions. In other words, there are millions of possible configu-
rations when the chosen factors vary. 

To make possible taking into account all of the possible 

configurations in an acceptable simulation time, a novel 
multivariate design of experiment (DOE) method is pro-
posed in this paper to create a reduced database. The ran-
domization and the probabilistic modeling make it possible 
to create an optimal DOE of fewer configurations chosen 
between the millions of possible configurations. However, 
unlike DOEs for univariate responses, design for multiple 
responses has not received much attention [2]. In fact, there 
is a dependency structure between the responses which 
make up the database of all configurations/PEV inputs; in 
other words, the responses for which we are deriving opti-
mal experimental designs. This requires a multivariate 
distribution underlying a pre-chosen model. 

To deal with this characteristic, we consider bivariate DOE 
for two of the correlated variables in the randomization 
process, which are the PEVs location and the base typical 
load profiles. The reason to select these two variables is 
their obvious dependence based on the customers’ behav-
iours; nonetheless, there are other variables in correlation 
with each other that have been neglected to make the pres-
entation of the whole idea straightforward. Anyhow, exten-
sion of the presented procedure to keep track of more than 
two correlated variables is practical thanks to the concept of 
copula. We use copula functions which provide a rich and 
flexible class of structures to derive joint distributions for 
bivariate data [3]. Copulas are functions that join multivari-
ate distribution functions to their one-dimensional marginal 
distribution functions.  

Using copulas for modeling purposes includes two straight-
forward steps: first, the marginal distributions along with 
their correlation matrix should be modeled; and second, a 
proper copula should be selected and fitted to the data. This 
paper proposes an Archimedean copula algorithm based on 
a Frank copula for case studies. Choosing Frank copula is 
because the Frank’s family permits negative as well as 
positive dependence. Nonetheless, other types of Archi-
medean copulas permit only nonnegative correlations be-
cause of the limited dependence parameter space [4].  

In the next section, the DOE method is described. The 
modeling needs of applying DOE method to congestion 
studies are also presented. In addition, the Frank copula is 
presented in a few words. In conclusion, the proposed 
method includes four main stages:  
1. modeling of uncertainties (database creation), 
2. applying multivariate DOE,  
3. power flow calculations on the reduced scenarios,  
4. and statistical analysis of the results. 
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Accordingly, it is presented a general perspective of em-
ploying bivariate DOE for studying congestion due to pro-
liferation of PEVs in distribution networks; in which the 
interpretation of the kind of results from the proposed 
method is illustrated. This short paper is organized to pre-
sent the theoretical characteristics and background of the 
proposed method in the EV scenario-generating application 
with sufficient detail to make it graspable in basics. There-
fore, the main focus is not to present a detailed case study 
(because of the page limit); however, a case study using the 
recorded data of a real distribution system is available in the 
last section in brief.   

BASICS OF EMPLOYING DOE TECHNIQUE 
FOR STUDYING ELECTRIC VEHICLES 
Fig.1 illustrates a very general model for a process or sys-
tem. In the presented diagram, output(s) are characteristics 
as the system’s response which could be observed or meas-
ured. This could be the load demand in a distribution net-
work due to the electric vehicle battery charging as the 
system. Controllable variables can be varied during the 
operational or planning optimization and such variables 
have a key role to play in the system characterization. Un-
controllable variables are difficult to control; so, they are 
responsible for variability in system performance or output 
inconsistency. 

System

Controllable variables 

Uncontrollable variables 

Input(s) Output(s)

Y

X1 X2 Xn…

Z1 Z2 Zn…

 
Fig. 1. A very general model of a system 

 
In case of PEVs, one may consider modern tariff structures 
as controllable variables and battery’s state of charge, 
charging start time and/or its location uncontrollable va-
riables. However, when trying to design a most informative 
reduced set of scenarios, these variables are better to be 
treated as controllable variables as well in order to have 
their part in the final outcome. Indeed, given a variable y 
and a number of variables X1, ..., Xp that may be related to y, 
then such an analysis can be applied to quantify the strength 
of the relationship between y and the Xj, to assess which Xj 
may have no relationship with y at all, and to identify which 
subsets of the Xj contain redundant information about y, 
thus once one of them is known, the others are no longer 
informative. 

The traditional method of collecting large quantities of data 
by holding each factor constant in turn until all possibilities 
have been tested is an approach that quickly becomes im-
possible as the number of factors increases. Such an in-

crease is about to appear when analyzing PEVs impact. A 
full factorial scenario design (that is, testing for PEVs’ 
demand at every combination of factors such as location, 
sate of charge, battery types, charging start time, tariff 
impacts and etc) is not feasible for extensive power flow 
calculations. The DOE solves this problem by choosing a 
set of scenario points that allow estimation of the model 
with the maximum confidence using just a fraction of the 
number of scenario runs. These optimally-chosen runs are 
more than enough to fit the model.  

Design of experiments (DOE) is a general technique that 
could be defined in several ways. One definition is as fol-
lows [5]: “A technique to obtain and organize the maximum 
amount of conclusive information from the minimum 
amount of work, time, energy, money, or other limited 
resource.” In other terms, it is a strategy to gather empirical 
knowledge, i.e. knowledge based on the analysis of experi-
mental data and not on theoretical models. It can be applied 
when investigating a phenomenon in order to gain under-
standing/modeling. When collecting new data for multiva-
riate modeling, one should pay attention to the efficiency, 
i.e. getting more information from fewer experiments/data 
and the focusing, i.e. collecting only the information that is 
really needed. Indeed, with today's ever-increasing com-
plexity of models, design of experiment has become an 
essential part of the modeling process. There are four basic 
ways to collect data for an analysis: 

1. Obtain historical data 
2. Collect new data 
3. Run specific experiments by disturbing (exciting) the 

system being studied 
4. Design experiments in a structured, mathematical way 

More generally, careful sample selection increases the 
chances of extracting useful information from the data. 
When one has the possibility to actively perturb the system 
(making scenarios with the variables), these chances be-
come even greater. The critical part is to decide which 
variables to change, the intervals for this variation, and the 
pattern of the experimental points. For example, should we 
consider charging start time as a variable to change; if so, 
what intervals for the variation of charging start time should 
be studied; and what the pattern/distribution of the variation 
points would be? 

Considering the definition by [5], the limited resource here 
is the computational time required for calculating load flow 
for all scenarios. In this way, both efficiency and focusing 
concepts is very helpful for getting a full understanding on 
how PEVs behave and interact with the network. Further-
more, the data for building initial scenarios is collected from 
the first and the fourth basic ways above that are using 
historical data as well as structural or mathematical ap-
proach. On the other hand, in order to be able to proceed 
with DOE technique, a probabilistic model should be fitted 
the system response. Here, the generalized linear model 
(GLM) is used. This is because this model works well with 
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the DOE. Also, the GLM presents a regression model that is 
suitable for modeling PEVs’ response in relation to the 
relevant factors in a discrete distribution framework. The 
GLM concept is briefly described in the following section. 

GENERALIZED LINEAR MODEL (GLM) 
In statistics, the generalized linear model (GLM) is a gene-
ralization of linear regression by allowing the linear model 
to be related to the response variable via a link function and 
by allowing the magnitude of the variance of each mea-
surement to be a function of its expected value [6]. It is very 
interesting to note that these features are convenient to 
model the behavior of PEVs; given that a change/shift in the 
expected value of the total power demand of PEV chargers 
(maybe due to a shift in timing) correlates with a change in 
its variance. 

On the other hand, modeling PEV demand behavior by a 
linear or normal regression is simply unrealistic and using a 
link function would contribute to a much better fit. It should 
be noted that relying on central limit theorem (CLT) for 
modeling active network components (e.g. PEVs’ response 
and intermittent renewables) is far more approximate than 
passive network components (e.g. base load); as a matter of 
fact such approximate models could even be misleading 
because the CLT requires all variables to be independent 
and identical.    

In a GLM, each outcome of the dependent variables, Y, is 
assumed to be generated from a particular distribution in the 
exponential family, a large range of probability distributions 
that includes the normal, binomial and Poisson distribu-
tions, among others. The mean, μ, of the distribution de-
pends on the independent variables, X, through [6] 

 
1( ) ( )E gμ β−= =Y X  (1) 

where, E(Y) is the expected value of Y; Xβ is the linear 
predictor, a linear combination of unknown parameters, β 
and g is the link function. In this framework, the variance is 
typically a function, V, of the mean 

 1Var( ) ( ) ( ( ))V V gμ β−= =Y X  (2) 

The unknown parameters, β, are typically estimated with 
maximum likelihood, maximum quasi-likelihood, or Baye-
sian techniques. 

Accordingly, the GLM consists of three elements: 
1. A probability distribution from the exponential family. 
2. A linear predictor η = Xβ. 
3. A link function g such that E(Y) = μ = g-1(η). 

The possibility of using a probability distribution model 
from the exponential family are considered as a significant 
advance beyond linear regression models. The exponential 
family of distributions is a generalization of the exponential 
family and exponential dispersion model of distributions 
and includes those probability distributions, parameterized 

by θ and τ, whose density functions f (or probability mass 
function, for the case of a discrete distribution) can be ex-
pressed in the form [7] 

 

( ) ( ) ( )( | , ) ( , ) exp
( )

T

Y
y Af y h y

d
θ θθ τ τ

τ
⎛ ⎞−= ⎜ ⎟
⎝ ⎠

b T  (3) 

τ, called the dispersion parameter, typically is known and is 
usually related to the variance of the distribution. θ is re-
lated to the mean of the distribution. If ( )θb  is the identity 
function, then the distribution is said to be in canonical 
form. The functions ( , )h y τ , ( )θb , ( )yT , ( )A θ  and d(τ) 
are known. Many, although not all, common distributions 
are in this family. 

The second GLM element is a linear predictor. The linear 
predictor is the quantity which incorporates the information 
about the independent variables into the model. It is related 
to the expected value of the data through the link function. η 
is expressed as linear combinations of unknown parameters 
β. The coefficients of the linear combination are represented 
as the matrix of independent variables X. The elements of X 
are either measured by the experimenters or stipulated by 
them in the modeling design process. The elements of X are 
stipulated from tariff and traffic data and by some behavior-
al forecasts based on the knowledge of planner in case of 
PEVs. 

The link function, on the other hand, is somewhat an arbi-
trary function. Nevertheless, it should be noted that when 
using canonical link function the linear predictor may be 
negative, which would give an impossible negative mean. 
When maximizing the likelihood, precautions must be taken 
to avoid this. An alternative is to use a non-canonical link 
function [6]. 

MULTIVARIATE DOE BY FRANK COPULA 
A design of scenarios/experiments ξ with n support points 
(to shape the probability distribution of the response) can be 
written as [2] 

 1 2 nw w w
ξ ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

1 2 nχ χ χ…
…

 (4) 

where, χi are the support points consisting of the explana-
tory variables which describe the experimental conditions 
with weights wi ∈ [0, 1] summing to 1. As mentioned in the 
previous sections, such a design should be made optimal by 
using some optimization methods. Formulation of this opti-
mization and its indexes are very extensive [2] thus out of 
the scope of this paper. 

Frank Copula 
Copula itself is becoming a mature concept while much of 
its potential applications are still not discovered. The theory 
of copulas is as comprehensive as a book [4]. Further to 
what is presented in introduction about copulas in a few 
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words, one may refer to [3] for practical viewpoints and 
tools. Here, it is just worth to mention the bivariate Frank 
copula function as it is applied in the congestion study’s 
scenario designing algorithm: 

 

1 2
1

1 2
( 1)( 1)( , ; ) log 1

1

u ue eC u u
e

α α

αα α
− −

−
−

⎛ ⎞− −= − +⎜ ⎟−⎝ ⎠
 (4) 

where, α is the non-zero dependence parameter. Incorporat-
ing this copula function in the GLM allows designing a set 
of optimally reduced scenarios taking into account the de-
pendence between parameters.  

CONGESTION STUDY BY USING THE 
PROPOSED FRAMEWORK 
When applying the proposed method to a congestion study 
under impacts of PEVs, the results could be illustrated as 
Fig. 2 and Table 1, showing some scenario simulations for 
five practically correlated feeders/lines in the form of a 
correlation matrix graph. The DOE is implemented using 
MATLAB on a 33-bus distribution system test case. A 
sample base case network for this real distribution area is 
represented in Fig. 3. The 200 configurations/scenarios have 
been simulated to put together Fig. 2 as a first round exam-
ple. The final outcome is about knowing which lines will be 
simultaneously congested under impacts of PEVs. Both 
PHEVs and BEVs are included within different scenario 
simulations. This may help the system operator to take 
decision in congestion management as well as grid rein-
forcement. 
 

Line #1
Current

Line #2
Current

Line #3
Current

Line #4
Current

Line #5
Current

 
 

Fig. 2.  Some scenario simulations for five practically correlated 
feeders illustrating their dependence structure under impacts of PEVs. 
 
Table 1. The Rank Correlation Coefficients Together with Confidence 
Measures (P-values) Corresponding to Fig. 1. 

 
 Line #1 Line #2 Line #3 Line #4 Line #5
Line #1 1.000 0.865 (0.045) 0.172 (0.000) -0.034 (0.042) 0.903 (0.057)
Line #2     1.000 0.227 (0.004)  0.350 (0.010) 0.005 (0.000)
Line #3   1.000 -0.146 (0.011) 0.202 (0.149)
Line #4     1.000 0.026 (0.000)
Line #5     1.000 

 
Indeed, a correlation analysis applicable to a database of 
currents in the lines of a distribution system forecast which 
congestions are correlated. Knowing where congestions will 
appear in the future is the first step of relevant grid rein-

forcements. For example, if the system planner has different 
solutions for the grid reinforcement, he or she could choose 
the one which removes correlated congestions. 

 
 
Fig. 3. Base case distribution network for sample analysis of Fig. 1. 

CONCLUSIONS 
This paper proposes a new statistical framework for model-
ing the impacts of PEVs in order to make extensive network 
analyses such as congestion studies feasible and reliable. 
The proposed statistical methods may be used in congestion 
studies for either long-term planning or shorter look-ahead 
time horizons as congestion management by giving the 
system operator a global view of the grid. For instance, if 
the system has to be reconfigured to clear congestion in a 
line, the fact that this line is correlated in inverse with an-
other one has to be taken into account. By knowing the 
correlated congestions, the system operator may find the 
most efficient management without studying each line of 
the grid separately. Furthermore, it should be noted that this 
paper, besides presenting a congestion study, proposes a 
technique to take into account the impacts of PEVs in other 
types of studies through a reduced but more accurate sce-
nario set. 
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