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ABSTRACT 
Broadcasted dynamic power price is used as a cost 
efficient way to indirectly regulate the power flow from 
many DER units. The control concept is experimentally 
tested with a limited number of DER units at the SYSLAB 
facility Examples from space heating are demonstrated. 

INTRODUCTION 
In future power systems, a growing part of the power 
generation is expected to come from small-scale, 
distributed power generating units. As a consequence, the 
number of large-scale power plants in the system will 
decrease. Most of the power system services (PSS) 
required for maintaining a proper operation of the power 
system is traditionally provided by the large-scale power 
plants, and other components in the power system must 
take over. 
Several Distributed Energy Resources (DERs) may, with 
minor modifications and little additional cost, become 
able to provide various power system services, including 
regulation of the active and the reactive power on 
requests. DER units are (by definition) controllable, 
small-scale units, connected to the distribution system 
and can be any combination of generation, consuming, 
storage and conversion. Except for the storage units, the 
main purposes for the DER units are to provide other 
services – their primary energy services. 
The contribution from the individual units may be 
modest, but the aggregated contribution from many units 
can be significant. As the volume of the power system 
services from the individual DER units is limited, the 
value of the PSS from the individual DER unit is 
correspondingly low, and the additional cost of the 
associated control for the individual DER unit must be 
kept low as well. This implies that 
• the number of active DER units must be high; 
• the additional investment costs and control costs for 

the individual DER unit must be low. 
This can only be achieved through simplified 
communication and fully automatically provision of the 
power system services. The main challenge is how to 
control these many units in a simple, cheap, efficient and 
reliable way. The existing power systems and power 
markets are typically not design for this. 
Control principles 
Most control principles for DER power systems can be 
divided into the three overall classes: 

• direct, centralised control of each unit involving 
direct two way communication to each unit – 
applied in most ‘virtual power plant’ (VPP) 
applications; 

• policy based, distributed control, requires 
autonomous, distributed control and advanced 
communication with a central controller;  

• indirect, centralised control of many units with 
broadcasted request, volunteer responses and the 
aggregated response as the control feedback. 

The central controller in the direct control principle 
controls each unit directly, which requires on-line 
overview of the status of each unit. 
The policy based control principle requires distributed 
controllers that can operate autonomous and that can 
change control strategy on request from the central 
supervisory controller. 
The indirect control principle requires many independent 
active units and the expected response must be based on 
experience and will never be known exactly. 
The broadcasted control signal for the indirect control can 
be a request for positive or negative regulation of the 
active or reactive power, it can be automatic responses to 
the local frequency or voltage, or it can be a dynamic 
power price. 
This paper presents an example of an indirect control 
principle based on dynamic power price and distributed 
intelligence. Forecasts of the power price and of the 
energy service needs are important for the optimisation of 
the control of the individual units. 
The FlexPower project 
investigates the perspectives of using dynamic power 
prices for indirect control of power regulation provided 
from DER units on volunteer basis. As a first step, the 
dynamic power price will be a global 5 minutes add-on 
price to the NordPool Spot price on hourly basis. But 
more advanced concepts are also investigated, including 
dynamic nodal pricing, taking into account the local 
congestions in the grid. The control algorithms developed 
in the FlexPower project for the individual DER units are 
implemented and tested experimentally at Risøs 
experimental facility SYSLAB and in a dedicated 
simulation tool, developed as part of the project. 
The experimental power system, SYSLAB, consists of 
real power components, including wind power, solar 
power, electrical heated office building (FlexHouse), 
electrical vehicles and electrical storage units – see 
Figure 1. Control algorithms designed for dynamic power 
prices are developed for the space heating, for the 
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electrical vehicles and for the storage units. Each of the 
power units are treated as independent costumers and are 
supposed to have their own individual controllers with 
individual control strategies. They may all shift their 
loads few hours in time with minor impact on the energy 
services. They all try to obtain an acceptable energy 
service at lowest cost. The storage units simple try to 
optimise the earnings. 
 

 
Figure 1: Diagram of the Risø SYSLAB experimental power 
system facility. 

The controllers constantly update their status and actions 
based on the infor o  a le  In general, except for 
the storage units, t imise the sum 

mati n vailab .
hey all try to min
∑  (1) 

for the next period (24 hours), where E express the 
deviation from the desired energy service (e.g. the 
deviation in temperature), C is the cost of electricity, and 
c1 and c2 are weighting factors. 
One aim of the project is to evaluate the value of the 
availability of different information. The control 
algorithms are therefore tested and compared, based only 
on historical data and based on advanced forecasts of 
both power prices and power needs for the next 24 hours 
period – including weather forecasts. 

FORECASTING 
Forecasting plays a central role in the concept. Forecasts 
of the 5 minute electricity price and consumption are 
used to derive the optimal control actions. 
Electricity price forecasting 
Electricity spot price forecasting are considered Jónsson, 
Pinson & Madsen (2010) showing that the forecasted 
wind power penetration influence the expected spot price. 
In FlexPower the actual 5 minute price for a specific time 
interval is broadcasted just before the beginning of the 
time interval. Consequently, the price is known for the 
time interval for which control actions should be 
effectuated. However, in order to incorporate the future 
development, forecasts of the price for the following time 
intervals must be available to the controllers. The control 
is based on minimization of the conditional expected cost 
of the electricity used over a rolling horizon. The first 
price is known, and it may be argued that it is sufficient 
to know the conditional expectation of the subsequent 5 
minute prices. 
The 5 minute prices in the proposed system does not exist 

and hence forecast methods cannot be investigated based 
on actual data and the dependence on external 
(predictable) signals cannot been investigated. However, 
following the arguments above it is reasonable to track 
the expected value as it varies over time. Furthermore, it 
is very plausible that the price signal will contain some 
autocorrelation. An adaptively estimated AR(1) model 
with a free mean is the most simple model fulfilling the 
above. If d t this model may 
be written

p(t) enotes the price at time 
: 

1  (2) 
where e(t) is white noise error and a and b are coefficients 
which must be tracked over time. If t denotes the current 
5 minute time interval the price for the following interval 
p(t+1) will be know at the before initiation of the interval 
and hence forecasts of the prices p(t+2), p(t+3),… must 
be produced given p(t+1) and other information available 
at time t. Given the model above the forecasts can be 
derived. E.g. the forecast of p(t+2) is a + b p(t+1) and the 
forecast of p(t+3) is a + b (a + b p(t+1)). 
As mentioned the model considered above is a very 
simple and in reality it must be expected that such 5 
minute prices contain some of the same behaviour as the 
spot prices do today. Therefore, it must be expected that 
the 5 minute prices are also affected by the wind power 
penetration. 
Consumption forecasting 
As an example, heat load forecasting is considered. 
Assuming that the actual indoor temperature is close to 
the desired temperature, well defined consumption 
forecasts are available. The control actions will be the 
deviation of the actual heat input from the heat input 
required in order to maintain the indoor temperature at 
the desired level. 
Nielsen and Madsen (2006) describe models of the 
relation between the heat consumption, climate variables 
and the time of day, week, and year. It is evident that 
measurements of the indoor temperature are available to 
the forecasting system. The outdoor temperature must be 
available either as a direct measurement or as a 
meteorological forecast.  The paper mentioned above 
forms the basis of the PRESS-Prognosis heat load 
forecasting system, which is recognised as a very 
accurate system. 
A system such as PRESS-Prognosis requires observations 
from the house (total heat consumption and indoor 
temperature) and meteorological forecasts in order to 
produce heat load forecasts. Forecasts are based on time 
intervals substantially longer that the 5 minutes intervals 
at which the controller operates. The reason is that the 
precise timing of the behavioural pattern of the 
inhabitants is probably unpredictable. Preliminary results 
indicate that 2-4 hours are appropriate time intervals. 
Technical setup 
Figure 2 shows the technical setup of the FlexPower 
system for a single household. The use of a central 
forecasting service allows state-of-the-art forecasts to be 



C I R E D 21st International Conference on Electricity Distribution Frankfurt, 6-9 June 2011 
 

Paper 0788 
 

 

Paper No  0788   3/4 

delivered to the controller. If a price forecast model as 
simple as described above is used it should be possible to 
include it in the local controller. For the consumption 
forecasts there is no benefit in including it in the local 
controller unless the use of meteorological forecasts is 
avoided. 

 
Figure 2: The technical set-up of the FlexPower forecasts. 

CONTROL ALGORITHMS 
As an example, the management of the domestic electric 
heating is presented. The considerations are based on the 
response of a linear dynamic thermal model of FlexHouse 
[3], an independent, 100 m2 office building, equipped 
with 10 kW electric heating. The thermal model describes 
the variation of the internal temperature as a function of 
the heat flux provided by the heaters, solar irradiation and 
external tem a uper t re. 

e general discrete objective is to inimize: 
 

Th  m
 ∑    (3) 

where the scalar values Ti is the indoor temperature, To 
the comfort temperature for the house, ui the controllable 
heating power, Ri the price of energy and F and Q two 
weighting coefficient; N defines the length of the 
optimization horizon. 
Classical LQ (Linear model, Quadratic cost) theory 
provides a closed form solutions for this problem; the 
control has the form of a feedback and most of the 
calculations can be performed offline, stored and used to 
get the feedback control only by multiplications. 
However, it doesn’t take into account the constraints and 
disturbance (solar irradiation) on the control. Therefore 
we’ve used the algorithms of the gradient [4] applied to 
the Euler-Lagrange equations.  
Algorithm Overview 
The constrains on the control have been transferred into 
the penalty function, as shown in equation 4, with the 
barrier function R(u). This function has got a linear grow 
in the middle and assumes an infinite value when the 
co  ptimal solution 
can

ntrol u approaches its limits so the o
’t lie in those point. 

, ,   
.

 (4) 
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In order to obtain a suitable form to penalize the optimal 
temperature deviation from the expression of the cost 
(equation 3) a new state – without dynamic but just with 
an initial condition equals to the optimal temperature– 
has been added t am stem and the cost 
matrixes F and Q o in this way: 

o the dyn ic sy
 have been m dified 

1 1
1 1

0 … 0
0

0 0

0

0

0

 (9) 

Choosing the coefficient for the weighting matrixes is 
important for obtaining a satisfactory result from an 
optimization algorithm. The two coefficients c1 and c2 
have been introduced in equation 4  in order to introduce 
a per unit representation. c2 is defined as the average 
price of the forecasted price signal multiplied by the 
nominal heating power (10 kW). Assuming c1 = 1, it 
means that the final user having a deviation of 1°C from 
the optimal temperature. Acting on c1 (a ‘pay more/less’ 
trimmer) it is possible to determine how to vary the 
temperature comfort as a function of price variation. 
Euler-Lagrange equations are the result of the 
calculations of the variations applied to a penalty function 
where the states are subject to a dynamic system; if 
they’re all satisfied the control trajectory is optimal for 
the defined penalty function. Introducing the Hamiltonian 
function: 

, , ,  , ,  (10) 
The Eule ]: r-Lagrange equations are [4

, , ,  (11) 
,  (12) 

, , , 0 (13) 
The gradient descent method defines a nominal control 
history; in this case the heating power necessary to 
maintain the optimal temperature at steady state assuming 
zero disturbs. The values of dynamic system can then be 
derived taking into account the disturb control (solar 
irradiation). This allows to compute the dynamic of the 
adjoin vector lambda integrating backward from the 
terminal condition (equation 11 and 12). With these 
values it is possible to compute equation 13. The control 
is perturbed and the algorithm is iterated until some 
satisfaction c ter t  each step the control 
values are mo ression: 

ri ions are me . At
dified according to this exp

  (14) 
Each new control is obtained subtracting from the 
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previous one a quantity proportional to the derivate of H 
with respect to control: the derivate value gives the 
direction on how to move the control in order to reduce 
the penalty. Coefficient k is important because it affects 
the speed of the convergence of the algorithm. 
The algorithm produces a control history for the coming 
future; however only the first control is applied. As soon 
as new electricity prices are available, the algorithm 
produces another control history – known as receding 
horizon control. 
Result 

 
Figure 3: The result of the optimization process and the effects 
on the temperature as response to the dynamic energy price. 

Figure 3 (top) shows the optimal control, compared to the 
power necessary to maintain a steady temperature (20°C); 
and the behaviour of the indoor temperature when the 
optimal control is applied (bottom). The green curve is 
the price of the energy. 
As expected, electric power is consumed more when it is 
cheap and it’s used to store thermal energy if the price 
forecast indicates an increase. c2=2 has been used. The 
dimensionless representation has proved to be an 
effective way to decouple the effect of the absolute value 
of energy price from the temperature in the penalty 
function. 
Figure 4 shows a simulation of the receding horizon 
problem. At each step of the optimization process only 
the first slice of the computed control is used. The 
forecast for the price is obtained using a form of the 
equation 2 and so it suffers from uncertainty. At the next 
instant of time a new real price for energy is released, a 
new forecast is produced, just the first slice of the control 
is applied and so on. Figure 4 (top) shows the effects of 
uncertainty on the temperature and it compares the real 
behaviour with the one that comes from an exact forecast 
of price. The (dimensionless) price that the user should 
pay for the whole period for the exact forecast (blue line) 
is: 5.95, for the real case: 6.17, while he should pay 10.36 
for maintaining an optimal indoor temperature. So both 
price and temperature show an acceptable performance, 
even when the price forecast is not exact. 

 
Figure 4:  A Receding Horizon simulation with a zero mean 
random noise on the forecast of price. 

Limitations and considerations 
There are a couple of issues before trying to apply this 
optimization method to the FlexHouse. The signal for 
power heating is continuous while the power of the 
heaters is discrete (on or off). This problem can be solved 
applying a duty cycle to the on/off signal inside each time 
slice. The main problems come from the thermal model 
of the house and the factors that afflict the real life which 
aren’t taken into account. Thermal models usually have 
different states, but only one is normally accessible for 
the measure (the indoor temperature). This creates a 
problem because the initial conditions for all the states 
except one are uncertain. Finally, the aggregated response 
comes from many different houses with different 
characteristics. Creating a specific model for each 
building is not realistic, but the modelling can be 
improved by adding some adaptive capabilities. 
After considering these limitations that can afflict the 
optimality of the control we should evaluate also the use 
of some simpler algorithms that produce a control only 
on the bases of the certain available variable. 
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