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ABSTRACT 

So far research on modelling the travelling patterns of 

electric vehicles (EVs) lacks technical depth since the 

variability of individual travel behaviour lack spatial and 

temporal disaggregated details - this data is needed by 

operators (DNOs) to assess EV impact at a low voltage 

level. Thus, it is essential to integrate issues concerning the 

mobility of EVs with the operational issues facing DNOs. 

This paper discusses how a bottom-up agent-based 

modelling (ABM) approach, addressing the mobility of EVs, 

can be combined with power flow studies at different levels 

of abstraction. From the DNO’s perspective the fact that 

EVs can move around means loads disappear and may re-

appear at a different location, which has consequences on 

the power flows. Hence the data collected from the EV 

driving patterns are quantified to monitor the state of 

charge of the batteries. Subsequently, the output collected 

from the ABM simulations are applied to power system 

studies by incorporating its data into a time coordinated 

optimal power flow (TCOPF) program. 

An example proof-of-concept case study is showcased to 

demonstrate the relevance of the ABM paradigm and the 

effectiveness of the TCOPF solver when they are merged 

for a small network; in this fashion proving interoperability 

between the models. Preliminary results illustrate the 

valuable operational information utilities can obtain 

regarding optimal EV charging strategies when considering 

an ABM approach to represent EVs in power flow studies. 

INTRODUCTION 

The impacts EVs have on electrical distribution networks 
will be closely related to the driving styles of these agents. 
This is because the amount of petrol displaced by the 
electrical power from the grid is influenced by various 
factors, such as energy consumed per recharge (i.e. battery 
capacity) and the total driving distance between recharges 
(i.e. driving profiles). Both environmental and energy 
efficiency benefits can come with the introduction of EVs, 
however if not properly rolled out the technology will be 
undermined [1]. Furthermore, some effects DNOs might 
face with EVs in the networks include [2]: 

• Modifying electric load profiles; 
• Altering electricity delivery costs and losses; 
• Shortening the life of substations; 
• Closer monitoring of operating data (e.g. voltage). 

 
Therefore, in order to gain the most from the deployment of 
EVs, it is imperative that power system engineers address 
the challenges these vehicles bring to utilities, the main 
challenge being: the mobility of units; hence understanding 
the driving profiles of users is fundamental. This is because 
EV deployment will create a “new” type of load for utilities, 
while also possibly offering power back to the grid when 
necessary. So far simulations employ limited data from 
travel surveys which are then aggregated [3]. For example, 
data reveals half of the daily driving distance of light duty 
vehicles is less than 65 km in the USA and less than 40 km 
in the UK [4] and [5].  
 
Electric utilities are designed with the premise to satisfy the 
instantaneous consumer demand that varies over time. 
Initial practical studies suggest GPS technology can aid 
DNOs in tracking and registering the movements of EV 
units so they easily cope with this “new” type of customer 
[6]. Nevertheless, on-field data is hard to come by for 
research purposes and robust modelling tools need to be 
explored through agent-based models in order to properly 
portray travel profiles in power system studies. Hence, this 
work presents an encouraging approach to represent mobile 
EV agents in optimal power flow studies through a holistic 
framework. By keeping track of the energy consumption 
these units have at each time interval, as well as their 
location in the network, it is possible to quantify “when” 
and “where” EVs will be able to charge; hence providing 
valuable temporal and spatial data to utilities which need to 
supply this type of load. The mobility data provided by the 
ABM model will be employed by the TCOPF program 
which functions as intermediary entity which making it 
possible to assess the optimal charging profiles EVs can 
have in local distribution networks. 

OPTIMAL POWER FLOW MODEL 

The TCOPF model introduced in [7] strictly focuses on 

operational issues; covering topics that deal with optimal 

power delivery at a distribution level and the dispatch of 

energy conversion and storage technologies. Hence, the goal 

of the TCOPF tool is to optimally coordinate the dispatch of 

EV units so they can have a seamless and advantageous 

integration into the grid. The TCOPF algorithm focuses on 

minimising a nonlinear objective function over multiple 

intervals that are restrained by a set of nonlinear constraints. 

By analysing the state of energy service networks for 

example for daily load profiles it allows the solver to devise 

the best moments to dispatch its control variables. 
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Based on these characteristics, the TCOPF problem 

formulation can be categorised as a typical multi-period 

nonlinear constrained optimisation problem that possesses 

continuous and mixed-integer properties. As a consequence, 

the TCOPF model can send operating signals based on the 

grid condition and the state of plugged EVs; effectively 

functioning as a body that enables demand response 

strategies.  

 

Demand response refers to “deliberate load control during 

times of system need, such as periods of peak demand or 

high market prices; creating in this manner a balance 

between supply and demand” [8]. Overall, these types of 

services are very valuable because of the load flexibility 

they offer to utilities. Therefore, the TCOPF tool functions 

as an intelligent coordinator that commands EV charging 

according to the conditions of the DNO, the power market, 

and the needs of the customers. Nevertheless, an assumption 

made so far in the TCOPF model did not address the issues 

regarding the mobility of EVs throughout the network. This 

critical issue needs to be tackled, since static representation 

of EVs limit the scope of analysis when calculating optimal 

charging of these agents. 

AGENT-BASED VEHICLE MODEL 

Since the mobility of EVs needs to be properly portrayed in 

power flow problems, agent-based modelling has been 

chosen as the ideal compliment to this complex problem. 

Agents, software entities which are autonomous, reactive, 

pro-active and capable of social interaction [9] can be used 

to simulate complex systems where the actions of individual 

“actors” lead to the emergence of overall behaviour or when 

the domain is too complex to be modelled in another way 

[10]. Hence, in this work when considering the individual 

owners of EVs as agents, each with their own profile and 

individual pattern of journeys, a bottom-up model allows 

experimenting with different scenarios and activities they 

must or might fulfil. The modelling results are estimated 

electricity demand to charge vehicles over time, and when 

using a geographical representation of the city, also unit 

distribution over space. 

 

In order to simulate EVs in an urban environment, an ABM 

of a virtual city was adopted from Malleson’s [11] 

RepastCity model and implemented in Repast Simphony. 

Driver profiles and location-specific activities have been 

considered based on travel habits. Likewise, characteristics 

such as battery capacity and energy use of electric vehicles 

available on the market have been included [12]. In 

addition, an 11 kV network was added to the city, with 

substations representing nodes to supply the urban area. All 

locational data and properties of roads, buildings and agents 

are stored using GIS (Geographic Information System) files 

from which the agent-based model is initialised and then the 

agents behaviour is implemented as algorithms in Java. 

During a simulation run, the drivers go about their day and 

choose activities based on the time (e.g. go to work in the 

morning, visit friends in the evening, etc) and their profile 

(e.g. pick up kids from school when the driver is a parent, if 

active go to work in the early morning). Through these 

activities, the batteries of electric vehicles are partly 

discharged. The model tracks the state of charge of 

individual batteries and stores the aggregated data at each 

substation (per time interval) when an EV unit is plugged to 

the network when idle and linking it to the nearest node. 

 

Existing micro-simulation traffic models and other agent-

based models of driver behaviour may be more advanced 

and provide more realistic traffic simulation (e.g. including 

congestion or traffic light control), instead here we chose to 

start with a relatively simple model that focuses on the 

temporal and spatial distribution of demand for electricity 

based on the activities of the drivers. 

 

Once the resulting travelling profiles of the agents have 

been calculated through the ABM model, this data needs to 

be interpreted and adopted by the TCOPF program. 

LINKING THE MODELS 

The energy demands generated by the agent-based 

simulation form one of the inputs for the power flow 

optimisation formulation. The relevant output of the ABM 

model consists of a matrix detailing the aggregated state of 

charge of batteries for each node at 30 minute intervals. 

Aside from the cumulative state of charge of all plugged 

vehicles in the direct vicinity of substations, the model gives 

the nodal maximum state of charge (i.e. the total capacity of 

all batteries together). Furthermore, for each vehicle in the 

city, the distance travelled during the day and the state of 

charge at the end of a day is registered. Now, it is important 

to clarify that the travel profiles from the ABM model serve 

as a forecasting tool that allows the TCOPF to estimate how 

much energy will be supplied per for EV charging. As such, 

the TCOPF solver then decides the duration and amount of 

power to supply the required energy for particular nodes. 

This type of problem is innovative in itself; henceforth the 

examples that can be carried out turn out to be as complex 

as the user desires. It is the purpose of this work to simply 

illustrate the main features of the ABM-TCOPF tool. 

CASE STUDY AND RESULTS 

An illustrative case study has been performed, as a proof-of-

concept exercise, to show how the interaction between the 

two steady-state models function; hence demonstrating the 

synergy of linking spatial and temporal energy use data 

from ABM modelling with optimal power flow algorithms 

for novel power system studies. As a consequence, this 

example demonstrates the type of valuable data that can be 

obtained once utilities have a forecast of EVs embedded in 

their networks and dispatches (charge) them accordingly. 



    C I R E DC I R E DC I R E DC I R E D 21st International Conference on Electricity Distribution Frankfurt, 6-9 June 2011 

 

Paper 1042 

 
 

Paper No  1042  3/4 

A simple city layout is assumed, consisting of a road 

network next to a set of houses, offices, schools, shops and 

leisure centres. There are four 11 kV network nodes in the 

city serving the local surroundings, please see Figure 2. 

 

 
Figure 2 – City layout used in the case study, the transport and 

electrical network are overlapped. 

 

The city is populated by 14 electric vehicle owners, even 

though this number can easily be changed, a small number 

units was chosen to clearly depict the level of granularity 

the ABM simulation can achieve. The EV unit used in this 

case study employ the technical characteristics advertised 

by the Nissan Leaf [13], having a battery capacity of 24 

kWh and an available range of 100 miles, which only 35% 

is used here as travel surveys suggest. To compliment the 

technical features of the EV, each driver has a particular 

profile to guarantee diversity in their daily activities; 

including job status and number of children, being assigned 

a house as its home and an office as its workplace. Finally, 

the problem is set-up so all agents have their batteries fully 

charged by 6 a.m., the time they leave home for their daily 

commute. Commonplace electricity demand of households, 

offices and shops which are not related to electric vehicles 

are not generated by the ABM, but used as separate input 

data for the TCOPF based on typical urban load profiles. 

Finally, a key assumption made in this study is that all EVs 

that are not driving are plugged into the electricity network 

and the substation nearest to them supplies their load. 

 

The ABM is executed to simulate a period of 24 hours on a 

typical week day in an UK urban area. Figure 3 shows the 

state of charge at 30 minute intervals for each of the four 

nodes, as output of the ABM model. Similar graphs can be 

created for the maximum charge at each node, and these 

bounds give the load flexibility at each substation as it 

determines how much electricity can be supplied at each 

node over time for EV customers, but it also shows how 

much energy is potentially available to feed back to the grid 

if required. Meanwhile, Figure 4 shows these bounds for 

one of the substations. As said before, the EVs do not 

charge based on decisions of the agents, instead the TCOPF 

solver functioning as a coordinator acknowledges the status 

of the networks and energy costs to make an informed 

decision which is given to the plugged EVs and DNOs. 

Figure 5 and 6 illustrate the ideal charging profiles of the 

EVs under two different objective function formulations. 

 

 
Figure 3 – State of charge of all plugged in vehicles over the 

day for each of the 4 substations. 

 

 
Figure 4 – Maximum charge and actual state of charge in one of 

the residential substations (e.g. node 2). 

 

 
Figure 5 – Optimal nodal charging of EVs for loss minimisation 

in the distribution networks. 

 

 
Figure 6 – Optimal nodal charging of EVs for cost minimisation 

in the distribution networks. 
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The two optimisations performed by the TCOPF program 

are minimum energy loss reduction (Figure 5) and minimum 

energy cost reduction (Figure 6); details on how the TCOPF 

problem is defined and established can be found in [14]. 

Now, although the simulation only considers 14 EVs 

present in the urban network, the optimisation does provide 

distinctive recommended charging profiles for the units 

based on the priority of the stakeholders. It is evident the at 

residential nodes EVs charge mainly during the night time, 

while in the office nodes EVs draw power during working 

hours. Special node deserves the scarce charging taking 

place at the leisure node since few EVs perform this activity 

during a working weekday, it can be expected this particular 

profile will be drastically different if a weekend day was 

simulated. Finally, it is important to clarify that although the 

profiles vary from each optimisation case, the power drawn 

by each node is the same in both formulations; thus the 

impartial TCOPF solver dispatches the EVs differently. 

CONCLUSIONS 

An example proof-of-concept case study is showcased to 

demonstrate the relevance of the ABM paradigm and the 

effectiveness of the TCOPF solver when they are merged 

for a small network; in this fashion proving interoperability 

between the models. Based on the TCOPF formulations 

proposed, the preliminary results illustrate the valuable 

operational information utilities and EV users can obtain 

regarding likely optimal charging strategies future networks 

may grow familiar with. An ABM approach is employed to 

represent and forecast the travel profiles EVs may take, 

serving as valuable input for power system engineers to 

perform power flow studies. Results confirm the ABM 

simulations correspond to typical behaviour of drivers and it 

is possible to translate their actions into energy demands 

which the utilities will have to provide in a cost-effective 

manner. Furthermore, results show the powerful level of 

granularity the simulations offer. 

 

Further work on this stimulating subject will consider fine-

tuning the ABM and TCOPF models. Then, additional 

experiments can be performed for a larger case study, for 

example by using a longer time-frame to include weekends 

or adapting the urban areas to different city layouts. Also 

modelling different sets and numbers of electric vehicles 

can provide meaningful data. Such experiments will not 

require any major changes to the models, but merely involve 

setting the right parameters and adding features as 

necessary. Furthermore, the ABM can be greatly expanded 

by just focusing on developing additional driver profiles 

(e.g. people working different shifts, taxi fleets of EVs), 

traffic to and from out of town, etc. An attempt will be made 

to create a link with the SynCity framework [15] which 

includes a unit on travel behaviour and other activities that 

could generate realistic and valuable EV forecasting for 

power flow optimisation simulations. 

This particular power system problem is an expanding 

research field of paramount interest for academics and 

industry, with direct consequences on operative, planning, 

and sustainability issues. We believe merging transport and 

energy models from different perspectives is the way 

forward to studying this complex energy systems issue. 
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