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ABSTRACT 

The aim of this paper is to present an alternative 

methodology for obtaining rational functions that 

suitably approximate the frequency response of power 

system networks. Through this methodology, part of the 

system under analysis can be replaced by a Frequency 

Dependant Network Equivalent (FDNE), which simplifies 

system representation and makes possible the accurate 

evaluation of large power networks. 

The methodology is based on Evolutionary Algorithms 

(EAs). Basically, different set of values for the rational 

function parameters are simultaneously assessed. The EA 

suitably changes the values for the function parameters, 

decreasing the RMS error between the system’s original 

frequency response and the response provided by the 

rational function. 

The results obtained through the proposed methodology 

were compared with the ones obtained through the 

Vector Fitting methodology, which is the common 

approach used for solving similar problems. 

INTRODUCTION 

It is widely known that the frequency domain approach is 

commonly applied in the assessment of power systems 

due to its lower computation burden. Despite of the better 

accuracy for the network models, time domain 

approaches are restricted to evaluate only small portions 

of a system. Thus, when assessing large power networks, 

only a frequency domain approach is considered. 

However, even in such scenario, the performance of the 

solution process may be considerably affected depending 

on the size of the linear system involved. 

The common approach to overcome such problem 

consists on using network equivalents. So, part of the 

system under study is replaced by a simple equivalent 

circuit, and only the buses and branches that are the focus 

of the study are maintained intact. The equivalent circuit 

is composed by only a few network elements, decreasing 

the size of the corresponding linear system and enabling 

the achievement of a solution. 

Nevertheless, when executing complex studies, such as 

harmonic assessment, the equivalent circuit should 

provide responses similar to the ones provided by the 

original network at any frequency range. Consequently, 

the task of designing a suitable equivalent circuit 

becomes not a trivial one. 

Basically, designing the FDNE consists on determining a 

rational function which approximates the frequency 

response data (admittance data) from the part of the 

system that is not the focus of the analysis. Through this 

rational function, a much simpler circuit could be derived 

according to the type and the number of poles. Thus, the 

number of network elements used to represent the whole 

system can be considerably reduced, enabling the 

execution of power system simulation for very complex 

networks. 

The admittance data used to find the rational function can 

be obtained through a frequency scan simulation in the 

complete network representation. Then, in order to 

simplify the following simulations and improve its 

computation performance, the equivalent circuit can be 

used to replace the corresponding part of the system. 

There are a few methodologies used to determine rational 

functions to approximate the frequency responses [1] [2]. 

The most promising one is the Vector-Fitting 

methodology [1]. It is a widely accepted methodology, 

due to its accuracy and performance. Several other papers 

have been published containing improvements made on 

the original methodology. Vector-Fitting implementation 

is also very complex, leading its authors to freely 

distribute a toolbox. 

This paper proposes an alternative methodology, based 

on EAs, which defines the values for the parameters of a 

rational function that approximates the frequency 

response from the part of the system under study that 

should be replaced by the FDNE.  

The use of EAs in power system topics has become very 

common in the past few years. It was initially used to 

optimize the solution of load flow problems. For 

example, in [4] the authors use the EA to define the 

optimal generation dispatch. Another example in using 

EA for solving load flow problems is presented in [3]. In 

this paper, the EA was used to define the most suitable 

set of injected harmonic currents, in order to estimate the 

harmonic voltage distortion at the buses of a power 

network. 

EAs are also used for parameter estimation in power 

system studies. In [5], the authors use an EA to determine 

the best values for the parameters of a motor model. The 

convergence of this approach was verified through the 

torque characteristics comparison between the estimated 

model and the one provided in the manufacturer manual. 

Following a similar approach, an EA was used in the 

present paper to estimate the parameters of a rational 

function that can represent the frequency response 

behavior of a power system network. Further details 
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about the methodology are presented in the following 

section. 

METHODOLOGY 

Evolutionary Algorithms 

A brief description of the EAs and their fundamental 

aspects are provided in this section, since the 

configuration of their parameters directly affects the 

results of the parameter estimation problem. 

Evolutionary Algorithms are a branch of Evolutionary 

Computation, which is a generic population-based 

metaheurist optimization process [15].  

The EAs correspond to an iterative process. Making an 

analogy with the natural selection process, each iteration 

is also called generation. Each generation is composed 

by a population of individuals, which correspond to a set 

of possible solutions. Each individual is composed by a 

gene, which stores the value for a parameter of the 

solution. 

Initially, the population for the first generation is 

randomly selected. Then, all the corresponding 

individuals are evaluated. At the evaluation stage, the 

fitness of each individual is evaluated through a function, 

which indicates how satisfactory the solution is. The 

fittest individuals tend to obtain higher evaluations. After 

evaluating the first population, the EA starts its iterative 

process. The EA operators (mutation, recombination and 

reproduction) are executed, in order to compose the next 

population. The first two operators modify the genes of 

the individuals from the previous generations, in order to 

create different solution alternatives. The reproduction 

operator selects the fittest individuals, in order to 

compose the population for the next generation.  

The EA Applied to the Rational Function 

Estimation Problem 

The basic idea of the present work is to define the values 

for the parameters of a rational function, similar to the 

one presented in Equation (1), which can suitably 

represent the frequency response behavior of a power 

system network. 

���� � � ��
� 	 
� � � � �


�

���
 (1) 

So, in the same way that happens with the Vector-Fitting 

methodology, a maximum number of poles N is 

previously defined. 

Solution Codification 
Only the values for the poles of the rational function were 

considered in the design of the EA’s individual, in order 

to reduce the amount of parameters to be estimated 

directly through the EA and help the problem 

convergence. The values for the zeros (d) and the 

residues (se) of the rational function were estimated 

though the least squares method during the evaluation of 

each individual. 

Two different codifications for the individuals were 

assessed in this paper. The simplest case is illustrated by 

Figure 1. Such codification considers that the rational 

function is composed by real poles only. 

 Pole #1  Pole #N 

Value γ1 … γN 

Deviation ∆1  ∆N 

Figure 1 – Codification for Real Poles 

The second codification is illustrated in Figure 2, and 

considers that the rational function is composed only by 

complex poles. As complex roots come in complex 

conjugate pairs, the number of poles that is actually 

directly considered in the codification is N/2. The 

corresponding complex conjugate pair of each pole is 

considered during the evaluation process. However, the 

number of values to be estimated (number of genes) 

continues to be N, due to the real and imaginary part of 

each pole. 

 Pole #1  Pole #N/2 

 
Real 

Part 

Imag. 

Part 
 

Real 

Part 

Imag. 

Part 

Value α1 β1 … αN/2 βN/2 

Deviation δ1 ∆1  δN/2 ∆N/2 

Figure 2 – Codification for Complex Poles 

Fitness Function – Solution Evaluation 
Initially, it is verified if each solution alternative leads to 

a passive network equivalent, i.e., if the real part of the 

frequency response at every frequency value is positive. 

Then, if the solution alternative is passive, its 

corresponding rational function is evaluated through the 

inverse of the RMS error between the original frequency 

response data from the power system network and the 

frequency response provided by the corresponding 

rational function.  

Initial Population 

In order to generate the initial population, the frequency 

range from the original frequency response data is 

arbitrarily divided into 100 partitions. Then, in order to 

define the initial value for each pole, a partition is 

randomly selected. The pole value corresponds to a 

frequency value randomly selected within the partition 

limits. The pole deviation corresponds to half of the 

difference between the partition’s higher and lower 

limits. 

When using the codification for complex poles, the 

imaginary part value and its deviation are defined 

according to the procedure described before. The real part 

value and its deviation are defined by dividing the value 

and the deviation of its corresponding imaginary part by 

100. 

Reproduction 
A (µ, k, λ) evolutionary strategy was used in the present 

work. It means that λ individuals were generated from a 

population of µ individuals. Such strategy also defines a 

maximum number of generations k that an individual can 
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remain during the EA convergence process. Through this 

approach, individuals that reach the limit of k generations 

are replaced by new ones (which are created through the 

process described for composing the initial population), 

giving the opportunity to test different solution 

alternatives, that might contribute favorably for the 

problem solution. 

Following the evaluation stage, the first 25% of the fittest 

individuals are select to compose the next generation. 

The other individuals that compose the population of the 

next generation are created through the recombination 

and mutation operators. 

Recombination 

The recombination is the EA operator that combines the 

characteristics of two solution alternatives into a new 

one. For the recombination operator execution, a 

probability value is randomly selected for each individual 

from the previous generation. If such value is below a 

probability rate previously defined on the EA 

configuration, the recombination operator is applied into 

the selected individual, in order to create a new one.  

In this paper, the recombination was made by calculating 

the average of the values and deviations. Figure 4 

illustrates the recombination process for the codification 

defined for real poles rational functions. 
 

γ1 γ2 γ3 γ4 γ5 

∆1 ∆2 ∆3 ∆4 ∆5 

(a) Individual #1 

γ6 γ7 γ8 γ9 γ10 

∆6 ∆7 ∆8 ∆9 ∆10 

(b) Individual #2 

(γ1+γ6)/2 (γ2+γ7)/2 (γ3+γ8)/2 (γ4+γ9)/2 (γ5+γ10)/2 

(∆1+∆6)/2 (∆2+∆7)/2 (∆3+∆8)/2 (∆4+∆9)/2 (∆5+∆10)/2

(c) New individual 

Figure 4 – Recombination operator 

Mutation 

The mutation operator is applied for each individual from 

the previous generation several times (according to a 

specific number of mutations per individual previously 

defined on the EA configuration), in order to create new 

ones.  

The mutation operator defines the value and the deviation 

for the new individual’s genes according to the values 

and deviations from the selected individual. An auto-

adaptive approach was used, as illustrated in Equations 

(3) and (4) for the codification used for real poles. 

Through this approach, the EA is capable of making a 

better verification of the region around each pole for a 

better solution. So, the chance of disturbing the process 

convergence is also reduced. 

∆����� ∆� · 
��
�·���,����·����,��� (3) 

  

����� � �� � ∆���� · N��0,1� (4) 

Where: 

• N�0,1�:  is a random number selected from a normal 

distribution with mean value 0 and standard 

deviation 1for every individual. 

• N��0,1�:  is a random number selected from a normal 

distribution with mean value 0 and standard 

deviation 1for every gene. 

• τ#:  individual’s learning rate  

• τ:  gene’s learning rate 

RESULTS 

The data from two different frequency responses were 

used in this paper to assess the proposed methodology. 

The results were compared with those provided by the 

Vector-Fitting methodology.  

The EA-based methodology applied the codification with 

real poles for Case #1 and the codification with complex 

poles for Case # 2. The approximation considered 2 poles 

for Case #1 and 6 poles for Case #2.  

In Figures 5 and 6 one can visually compare the 

approximations determined by the EA-based 

methodology and by the Vector Fitting methodology with 

the original frequency responses. There is no visual 

difference between the approximations.  

In Tables I and II, one can observe the rational function 

parameters defined by each methodology. The total RMS 

error of each approximation is also presented.  

In Case #1, the simulation considered 100 generations, 

20 individuals per generation, 100% for the 

recombination probability and 10 mutations per 

individual. In order to make a fair comparison, the Vector 

Fitting methodology was executed 2,000 times. 

In Case #2, the simulation considered 100 generations, 

200 individuals per generation, 100% for the 

recombination probability and 10 mutations per 

individual. Also here, in order to make a fair comparison, 

the Vector Fitting methodology was executed 20,000 

times. 

CONCLUSIONS 

A new methodology for determining a rational function 

approximation of frequency response data was 

introduced. Although the approximation made through 

the Vector-Fitting methodology presented smaller errors, 

the EA-based methodology also presented good 

approximation results. The errors are in the magnitude 

order as those obtained through the Vector-Fitting 

methodology. 

An important aspect to highlight is that through the EA-

based methodology does not require any passitivity 

enforcement procedure to reach a passive equivalent. As 

a result, the authors of this paper intend to execute further 

investigations over this topic, evaluating the methodology 

for other frequency responses. 
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Table I – Rational Function Parameters for Case #1 

 
Codification with 

Real Poles 
Vector Fitting

Zero #1 4.18e+01 2.67e+02 

Pole #1 -3.40e+03 -1.81e-02 

Zero #2 2.69e+02 4.03e+01 

Pole #2 -1.85e+02 -2.92e+03 

“d” 1.27e-03 1.69e-03 

“e” 1.66e-05 1.66e-05 

Error % 0.94 0.74 
 

Table II – Rational Function Parameters for Case #2 

 
Codification with 

Complex Poles 
Vector Fitting 

Residue #1 2.09e+01-j5.31e+04 1.51e+02 

Pole #1 -6.51e+03+j9.38 -6.14e+01 

Residue #2 2.09e+01+j5.31e+04 1.56e+02 

Pole #2 -6.51e+03-j9.38 -3.96e+03 

Residue #3 4.30e+02+j8.81e-01 -3.71e-01-j4.37 

Pole #3 -7.73e+02+j1.31e+04 -4.67-j3.11e+02 

Residue #4 4.30e+02-j8.81e-01 -3.71e-01+j4.37 

Pole #4 -7.73e+02-j1.31e+04 -4.67+j3.11e+02 

Residue #5 7.54e+01-j1.49e-10 4.34e+02-j4.37 

Pole #5 -7.32e+01 -7.82e+02-j1.31e+04 

Residue #6 7.54e+01+j1.49e-10 4.34e+02+j4.37 

Pole #6 -7.32e+01 -7.82e+02+j1.31e+04 

Parameter “d” 1.08e-02 4.07e-03 

Parameter “e” 1.82e-06 2.10e-06 

RMS Error % 1.55 1.09 
 

 
(a) Magnitude 

 
(a) Magnitude 

 
(b) Angle 

Figure 5 – Frequency Response for Case #1 

 
(b) Angle 

Figure 6 – Frequency Response for Case #2 
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