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ABSTRACT 
In this paper, energy losses in active distribution networks 
are estimated by a straightforward technique. This 
technique, after its first adjustment to a network, does not 
require any extensive computations such as scenario-based 
load flow calculations. Active distribution networks are 
characterized by accommodating more stochastic energy 
flows due to the proliferation of electric vehicles as well as 
renewable resources. Accordingly, the proposed algorithm 
is built on recording typical daily load profiles (TLP) and 
analyzing them together with typical stochastic energy 
profiles (TSP) so it can be fitted with a copula model to 
achieve an updated typical energy flowing profile (TEP). 
The copula model allows us to capture the strong 
dependence structure between load, generation and storage 
variable behaviors involving non-Normal marginal 
distributions. Furthermore, TLPs and TSPs correlations are 
in a multivariate context that joining them requires the 
concept of copula. 

INTRODUCTION 
Considering the rapid movement of passive power systems 
towards highly active topologies it seems that the need for 
modeling of uncertainties will dramatically increase. To 
take successful steps toward planning and configuring 
active distribution networks, utilities need to take a 
predictive look at how the new active system’s components 
would affect the traditional efficiency indexes such as the 
energy loss. In fact, there will be huge stochastic energy 
flows stemmed from proliferation of both distributed 
generation and distributed storage. So, knowing how to 
calculate and reduce energy loss in such systems is a 
challenging topic in some way.  

As it is well-known, accurate energy loss computation in 
passive distribution systems require a large amount of 
reliable data and the computational burden increase 
dramatically as the size of the network increases. As a 
result, there have been proposed different straightforward 
techniques such as using total heavy load loss or loss factors 
for calculating energy loss. However, the accuracy of these 
techniques is limited but up to passive networks may be 
absolutely acceptable [1].  

On the other hand, when trying to estimate energy loss in 
active distribution systems, it is practically necessary using 
probabilistic methods and/or extensive simulations. There 
exists some recently published research in this field (e.g. [2-

3]) that intends to make an estimation of energy loss by 
extensive scenario-based simulations. The proposed 
methods so far, as it may correspond to accurate loss 
calculation in passive networks, need massive computations 
or they will suffer significant approximations. From this 
point of view, it seems that there is a need for a more 
straightforward method to forecast energy loss in active 
networks. 

In this paper, we try to make an estimation of energy loss in 
the active distribution systems as accurate as possible. 
Moreover, the developed algorithm could be used as a 
generalized subroutine embedded in other system analyses 
and optimal planning procedures. It allows energy losses to 
be forecasted without computing load flows for each time 
interval of the daily load flows and various scenarios of 
active energy flows. 

The proposed algorithm is built on recording typical daily 
load profiles (TLP) and analyzing them together with 
typical stochastic energy profiles (TSP) so it can be fitted 
with a copula model to achieve an updated typical energy 
flowing profile (TEP). The copula model allows us to 
capture the strong dependence structure between load, 
generation and storage variable behaviors involving non-
Normal marginal distributions. Such an analysis is to 
epitomize the aggregate uncertainty corresponding to 
spatially spread stochastic variables [4]. 

Here, we consider wind and photovoltaic distributed 
generations along with a number of plug-in electric vehicles 
to construct TSPs. The main formula for calculating energy 
loss is based on a method which only needs mean, variance 
and correlation information of the net TLPs [5]. Coming 
along this formula, fitting the copula model allows us to 
take the TSPs into account; subsequently, the energy loss of 
the active grid would be forecasted. A main advantage of 
using this method is its computational efficiency; hence, the 
use of a multivariate Monte Carlo method would be easy to 
carry out. On the other hand, the statistical rank moments 
and the copula model should be obtained only once for all 
TLPs and TSPs present in the network. It should be 
mentioned that the whole algorithm is tested using real data.  

BASIC CONCEPTS 
To make clear the idea proposed in introduction, three 
concepts should be considered; first, the typical stochastic 
energy profiles, second, the statistical loss calculation 
method, and third, the copula theory. These are discussed in 
satisfactory detail in the following sections. Loss 
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calculation in passive systems and the TLPs are mature 
concepts; so, they are not presented. 

Typical stochastic energy profiles in active 
distribution networks 
Renewable distributed generation (DG) devices interact 
with the operation, protection and control of the distribution 
feeder at which they are installed. The produced electrical 
power via a variety of these generation units is stochastic by 
a non-dispatchable primary energy source. Therefore, DG 
systems inherently provide some benefits and produce some 
potentially unwanted effects. They may improve the load 
curve and the voltage profile across the feeder, may reduce 
the loading level of branches and substation transformers, 
and provide loss reduction benefits from the utility point of 
view.   

Although the practical capacity of these systems is much 
smaller than the conventional generation units, their 
integration may significantly alter the behavior of the 
system across which they are installed. Deterministic 
modeling of such a system with stochastic non-dispatchable 
DG units (e.g. wind or photovoltaics) is not trivial [4].  

Therefore, the use of stochastic methods (e.g. statistical data 
analysis such as scenario-based or sample-based modeling) 
is unavoidable in addition to the basic deterministic 
methods. This is also correct when considering the plug-in 
electric vehicle (PEV) loads as deterministic analyses can 
not account for variations associated with them. Quantifica-
tion of the system response considering the spatial and 
temporal variations in PEV loads should be addressed 
through the probabilistic analyses. The main contribution of 
the probabilistic analyses are providing empirical data 
towards likely system behavior in response to likely PEVs 
and distributed generation loading scenarios.  

These scenarios, all together, representing the behavior of 
the DG/PEV load time series in view of uncertainty, could 
be used for planning purposes. This provides a scenario-
based forecasting of DG/PEV load. It should be noted that 
the application of point forecasting methods for such data 
behaviors (even the methods that consider uncertainty) is 
inappropriate. Indeed, the statistical volatility of DG and 
PEV load time series makes the point forecasts unreliable in 
long-term. On the other hand, scenario-based forecasts (or 
to say “scenario-based modeling” more appropriately) is an 
attempt to reduce the inaccuracy of representing the reality 
with a limited number of scenarios. It is supposed that the 
weighted scenarios by probability produce an aggregate 
closer to the ideal forecast. An example of such a modeling 
is illustrated in Fig. 1 by a topological probability sorting 
graph.  

Furthermore, there are two additional considerations for 
PEVs. First, it is assumed that there is no smart metering 
system available for PEVs at the moment, so the vehicles 
will be charged without coordination. In an uncoordinated 

charging scenario the charging start time depends on 
incentives that encourage the vehicle owner to optimize the 
grid utilization or to start charging using off-peak electricity 
tariffs. Second, loss calculation and minimization is relevant 
from distribution system operator viewpoint where 
aggregated PEV load behaviors could be clustered and 
assumed typical based on the pinpointed scenarios.  

Unlike TSPs of renewable DG, but according to TLPs, 
TSPs of PEVs should be treated differently for different 
kinds of consumers. Here, on the report of the test system 
(Fig. 2), three categories are assumed for TLPs and TSPs of 
PEVs: residential, industrial, and commercial. In case of 
constructing PEV-TSPs, it is assumed three uncontrolled 
tendencies for the three consumer/owner groups: 

• Uncontrolled tariff-based residential charging 
mainly occurs between hours 22 and 5 by a 
Gaussian curve.  

• Uncontrolled public industrial  charging mainly 
occurs between hours 7 and 15 by a Gaussian 
curve 

• Uncontrolled public commercail  charging mainly 
occurs between hours 9 and 16 by a Gaussian 
curve 

The resulting scenarios by considering uncertainties as well 
as confidence interval (CI) probabilities would be used to 
forecast a typical behavior. 
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Fig. 1. An illustration of scenario-based approximation of typical PEV 
load uncontrolled behavior. The color map is to indicate different 
probability areas over which are located various scenarios (this form 
of graph has been proposed by [6]).  

Based on this approach, it is possible to calculate a typical 
behavior or daily curve for DG according to [4] and advise 
a typical behavior or daily curve for PEVs based on the 
statistical moments (e.g. mean) of PEVs’ temporal and 
spatial diversity scenarios. 

The test system and data are chosen from [4]. The typical 
stochastic energy profiles (TSP) of wind and solar power 
generation are related to Davarzan area along with the base 
case distribution system as presented in [4]. The network 
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data is according to Table 1 and distribution of typical wind 
and solar power behaviors along with three TLPs are shown 
in Figs. 2 and 3. 
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Fig. 2. (a) Active power profiles and (b) reactive power profiles along 
with three sample cluster centres as TLPs. 
 

 
 

Fig. 3. Modeled typical load, wind, and solar power profile datasets; 
wind power sets (WP) and solar power set (PV) are a part of TSP. 

Table 1. Network data. 

 
Branch 
No. 

Sending 
Node 

Receiving 
Node 

Branch Parameters Receiving Node Avg. Load

 r (Ω) x (Ω) P (kW) Q (kVAr)
1 0 1 1.303 0.408 410 350 
2 1 2 0.358 0.124 560 420 
3 2 3 1.904 0.808 580 360 
4 3 4 0.987 0.456 320 280 
5 4 5 0.300 0.110 380 210 
6 5 6 0.150 0.055 610 430 
7 0 7 1.113 0.501 330 260 
8 7 8 0.902 0.414 380 200 
9 8 9 0.493 0.228 390 270 

10 9 10 0.512 0.232 460 230 
11 10 11 0.512 0.232 320 240 

Substation Voltage: 20 kV 
Total: P = 4740 kW, Q = 3250 kVAr 
 

Statistical loss calculation method 
Calculation of energy loss in full-size distribution networks 
is a computationally demanding task even using today’s 
superfast computers. This seems much more challenging 
considering the fact that new solutions for active 
distribution networks or smart grids necessitate use of 
probabilistic/iterative Monte Carlo-based simulations. Such 
simulations are a source of high computational burden 
itself. Therefore, in case of active distribution networks, the 
need for an efficient loss calculation method is much more 
noticeable than in case of passive systems. 

A vast number of research papers have been reported less-
demanding loss calculation methods in passive systems. 
Among them, there are several methods based on some 
statistical properties of daily load profiles. Such methods 
are more suitable than deterministic methods when 
employed in active networks [7]. This is clear considering 
stochastic behaviors highly penetrated in such networks. 
Among statistical techniques, Shenkman [5] proposed a 
technique in which the correlations between different 
typical load patterns/profiles (TLP) are also considered. 
This potentially provides a suitable context allowing typical 
stochastic energy profiles (TSPs) to be joined with TLPs. 

Indeed, not taking the dependence structures (correlations) 
properly into account when joining TLPs and TSPs would 
contribute to inaccurate results [4]. 

The main formula for relating energy flows in the network 
to energy loss are as follows as repeated from [5]: 
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in which, Prms and Qrms are rms values of active and reactive 
powers respectively, ΔW is the energy loss in the time 
period T, lP  and lQ  are the average value of l-th active and 
reactive TLP, and ,

P
l kρ  and ,

Q
l kρ  are the correlation between 

l-th and k-th active and reactive TLPs, respectively. In the 
proposed algorithm TLPs are replaced with TEPs in which 
the impacts of TSPs are taken into account. The only 
remaining problem is how to join TLPs and TSPs. This 
could be perfectly performed by copula theory. 

Copula theory 
The TLPs and TSPs are both multivariate; so, jointing them 
needs one of the following approaches: 

 

 
TLP1 

 
 

TLP2 

 

 
TLP3 

 

 
WP1 

 
 

 
WP2 

 
 

 
WP3 

 
 

PV1 

 
TLP1             TLP2                TLP3               WP1                WP2                WP3                 PV1 



 C I R E D 21st International Conference on Electricity Distribution Frankfurt, 6-9 June 2011 
 

Paper 1313 
 

 

Paper No  1313   4/4 

1. using a multivariate probability distribution 
function (pdf), or 

2. using a linking multivariable function to join one-
dimensional marginal distribution functions. 

The second approach is called copula theory and the linking 
function is referred to as copula function. Dealing with the 
application of this paper, the first approach is inapplicable; 
because, it requires all marginal pdf’s to be identical as well 
as the number of the variates to be limited (less than three 
for a reliable application [8]).  

The copula theory is considered as a general way of 
formulating a multivariate distribution in such a way that 
various general types of dependence can be represented [8]. 
The approach to formulating a multivariate distribution 
using a copula is based on the idea that a simple 
transformation can be made of each marginal variable in 
such a way that each transformed marginal variable has a 
uniform distribution. Once this is done, the dependence 
structure can be expressed as a multivariate distribution on 
the obtained uniforms, and a copula is precisely a 
multivariate distribution on marginally uniform random 
variables. When applied in a practical context, the above 
transformations might be fitted as an initial step for each 
marginal distribution, or the parameters of the 
transformations might be fitted jointly with those of the 
copula. Fig. 4 illustrates all this by a simple diagram. 

There are many families of copulas which differ in the 
detail of the dependence they represent. A family will 
typically have several parameters which relate to the 
strength and form of the dependence. The Frank copula is 
used in this paper because it allows both negative as well as 
positive dependence.  

A satisfactory presentation of the copula theory is out of the 
scope of this paper; however, one may refer to [4], [8] for a 
practical as well as theoretical presentation. 
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Fig. 4. Copula modeling structure 

RESULTS AND CONCLUSIONS 
The forecasted power losses are represented in Table 2 for 
three cases: the base case passive network (without TSPs), 
without PEVs, and PEV uncontrolled charging.  

It is shown by considering Table 2 that uncoordinated/ 
uncontrolled charging of the PEVs has a non negligible 
impact on the power losses in active distribution systems. 

Table 2. Power losses for the test grid. 

Quantities 
(aggregate of all 
typical groups) 

Base 
case 

TSP penetration 
level (wind,PV), 

15%, without PEVs 

TSP penetration 
level, 15%, PEV 

uncontrolled, 20% 

Peak load (MVA) 4.85 4.22 5.40 

Power losses (%) 1.60 1.15 2.10 

 

On the other hand, the other part of the TSPs that is the 
renewable distributed generation, generally, reduces loss 
levels. The correlation between different TSPs and TLPs in 
addition to the internal correlation among various TSPs and 
TLPs determines how theses stochastic energy profiles 
affect distribution system performance and losss. It is 
interesting to note that the proposed method provides a 
measure to estimate an amount and location (as typical 
profiles include locational information as well) of 
renewable distributed generation to compensate impacts of 
PEVs or even to control PEVs in order to minimize losses.   
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