A BALANCED SCORECARD APPROACH FOR THE ENHANCEMENT OF DISTRIBUTED RENEWABLE PENETRATION LIMIT IN ISOLATED NETWORKS

Presented by: Dr. Worawit Tayati
Outlines

- Introduction
- Problem definition
- Methodology
- Study results
- Conclusions
- Discussion
Horizon Power – Who are we?

- Vertically integrated
- State owned
- Service regional towns and remote communities
- 2.3 Million sq.km
- 43,000 customers
- Excluding the South West Interconnected System (SWIS) ~700,000 cust.
Our service area

- 30 isolated systems (~0.2 – 30MW)
- The North West Interconnected System NWIS (~500MW)
- Fuel mix – Gas, diesel
- Hydro - North East
- Wind - coastal
- Solar PV – inland
- Controlled and centralised RE systems
PV/Diesel/Flywheel hybrid system

Marble Bar – 300kWp PV with Tracking
87% instant. penetration
30% energy penetration
Integration of Wind - Esperance

Two wind farms – Total ~ 5.6MW
LARGE TOWN
(ESPERANCE)

Frankfurt (Germany), 6-9 June 2011

- 33kV Network
- ~ 22MW peak demand
- 7x 5MW Gas turbine
- ~ 2500 HV cct.kms
Our Strategy Wheel

- Cost of energy
 - 0.23 - 1.68 $/kWh
- GHG Emission
 - 0.68 kgCO2e/kWh
- Reliability (/yr/cust.)
 - SAIFI -2.43 (6.6*)
 - SAIDI-162 (290*min)

*Target
Outlines

- Introduction
- Problem definition
- Methodology
- Case study results
- Conclusions
- Discussion
Problem & Drivers

Drastic increase in PV installations exceeding current limits

- Abundant solar resources
- Decreasing PV panel cost
- Generous Government Incentives
 - RECs - capital cost subsidy
 - FiTs (40c/kWh) - net feed-in
Technical Issues

- System reliability concern
 - Small, isolated systems
 - Low fault level, low inertia
 - No other sources of supply
 - Extensive HV overhead networks

- LV / MV voltage rise issue
 - Evidence of customer PV inverters trip off
 - LV network operating voltage sets too high
Outlines

- Introduction
- Problem definition
- Methodology
- Case study results
- Conclusions
- Discussion
Methodology

- Reviewing existing penetration limit
 - Stability and network design
- Identifying enhancement strategies
 - Power station and network
- Assessing - balanced scorecard
 - Strategy wheel, technical, commercial aspects
- Validating – a case study
Existing limits

Supply Quality = PQ + Reliability

- Power station (P/S) limit: reliability
 - Step load < unit rating (N+1 spinning reserve)
 - Stand alone = no other sources of supply

- Network limit: power quality (PQ)
 - LV PV < 20% of Tx rating – islanding
 - LV/MV voltage rise
Rule of Thumb

PV limit is the minimum of the followings:
- 50% smallest generating unit
- 15% of peak demand – diesel generation
- 10% of peak demand – gas generation

And:
- De-rating of PV output due to temperature and inverter efficiency by ~70%
Enhancement strategies

- Power quality (PQ)
 - Network reinforcement (NR)
 - PV inverter sophistication - output curtailment

- Reliability
 - Under Frequency Roll Off (UFRO)
 - Extra spinning reserve (Ex SR) + PV forecast
 - PV Fault Ride Through (FRT)
 - Distributed UFLS - demand response
 - Energy Storage (ES) & AMI
A Balanced Scorecard (BSC)

- Economics
- Environmental
- Social - Customer equity
- Technical
 - Effectiveness
 - Uptake
- Commercial
 - IPP contracts <10% RE
CASE STUDY - Carnarvon

Selection Criterion:

- PV penetration exceeding current limits
- Horizon Power owned P/S
- New P/S under construction
 - Opportunity to implement innovative enhancement strategies
- Centralised wind energy integration envisaged
Outlines

- Introduction
- Problem definition
- Methodology
- Analysis of results
- Conclusions
- Discussion
Network Fault Studies

Impact of network faults on distributed PV

Frankfurt (Germany), 6-9 June 2011
Network Fault Studies

- Faults near to P/S, voltage depression
- Faults away from P/S, system frequency dips (due to high R/X ratio)
- PV inverters may trip on UV or UF

“Adverse impacts on power station stability”
PV Fault Ride Through

- Investigate effects on PV of network faults followed by feeders trip and reclose
- Determine effectiveness of PV FRT functionality
"PV FRT enhances system reliability"
BSC for Carnarvon

<table>
<thead>
<tr>
<th>Balanced Scorecard</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uptake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPP Contract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Green = Good, Yellow = Fair, Red = Poor, Orange = Bad
Summary – Case Study

- Network Reinforcement (NR) recommended
- UFRO recommended for new P/S
- PV FRT considered, improve reliability
 - Proven technology, uptake?
- UFLS – uptake?, effectiveness?
- Energy storage – cost barrier
- AMI – uptake?, cost
- Extra SR – commercial contract, more emission, cost
Spinning reserve
(Based on N+1 operating philosophy)

PV limit based on 1.6MW Spinning Reserve

Loss of PV
PV Generation
Loss of Gen

Network Load (MW)

SR (MW)

Loss of Total PV
Loss of Single Unit
Possibility of Higher PV Penetration

PV limit based on 1.6MW Spinning Reserve

Loss of PV
PV Generation
Loss of Gen

Loss of Single Unit
Loss of Total PV
Outlines

- Introduction
- Problem definition
- Methodology
- Study results
- Conclusions
- Discussion
Conclusions

- Small power system supply quality is susceptible to level of distributed PV penetration
- Expectation to accommodate distributed PV
- Our deterministic limits based on spinning reserve may be too conservative
- There are opportunities to increase decentralised PV penetration limits using a risk based probabilistic approach e.g.
 - Probability of not all PV disconnecting following faults
 - Probability of fault frequency (fault rate)
 - Probability of PV output not at installed capacity (temperature, cloud cover, incident angle, etc.)
Outlines

- Introduction
- Problem definition
- Methodology
- Study results
- Conclusions
- Discussion
THANK YOU FOR YOUR ATTENTION

QUESTIONS?