

A BALANCED SCORECARD APPROACH FOR THE ENHANCEMENT OF DISTRIBUTED RENEWABLE PENETRATION LIMIT IN ISOLATED NETWORKS

Presented by: Dr. Worawit Tayati

Outlines

Introduction

Problem definition

Methodology

- Study results
- Conclusions

Discussion

Horizon Power – Who are we?

- Vertically integrated
- □ State owned
- Service regional towns and remote communities
- □ 2.3 Million sq.km
- □ 43,000 customers
- Excluding the South West Interconnected System (SWIS) ~700,000 cust.

Frankfurt (Germany), 6-9 June 2011

Our service area

- 30 isolated systems
 (~0.2 30MW)
- The North West Interconnected System NWIS (~500MW)
- □ Fuel mix Gas, diesel
- Hydro North East
- Wind coastal
- □ Solar PV inland
- Controlled and centralised RE systems

PV/Diesel/Flywheel hybrid system

Integration of Wind - Esperance

Frankfurt (Germany), 6-9 June 2011

Our Strategy Wheel

- □ Cost of energy
 - 0.23 1.68 \$/kWh
- □ GHG Emission
 - 0.68 kgCO2e/kWh
- Reliability (/yr/cust.)
 - SAIFI -2.43 (6.6*)
 - SAIDI-162 (290*min)

*Target

Outlines

Introduction

Problem definition

- Methodology
- Case study results
- Conclusions
- Discussion

Problem & Drivers

Drastic increase in PV installations exceeding current limits
Abundant solar resources
Decreasing PV panel cost
Generous Government Incentives
RECs - capital cost subsidy
FiTs (40c/kWh) - net feed-in

Technical Issues

System reliability concern

- Small, isolated systems
- Low fault level, low inertia
- No other sources of supply
- Extensive HV overhead networks

LV / MV voltage rise issue

- Evidence of customer PV inverters trip off
- LV network operating voltage sets too high

Outlines

Introduction
Problem definition
Methodology
Case study results
Conclusions
Discussion

Methodology

Reviewing existing penetration limit

 Stability and network design

 Identifing enhancement strategies

 Power station and network

 Assessing - balanced scorecard

 Strategy wheel, technical, commercial aspects

 Validating – a case study

Existing limits

Supply Quality = PQ + Reliability

□ Power station (P/S) limit : reliability

- Step load < unit rating (N+1 spinning reserve)</p>
- Stand alone = no other sources of supply

□ Network limit : power quality (PQ)

- LV PV <20% of Tx rating islanding</p>
- LV/MV voltage rise

Rule of Thumb

PV limit is the minimum of the followings:
50% smallest generating unit
15% of peak demand – diesel generation
10% of peak demand – gas generation
And :

De-rating of PV output due to temperature and inverter efficiency by ~70%

Enhancement strategies

- Power quality (PQ)
 - Network reinforcement (NR)
 - PV inverter sophistication output curtialment
- Reliability
 - Under Frequency Roll Off (UFRO)
 - Extra spinning reserve (Ex SR) + PV forecast
 - PV Fault Ride Through (FRT)
 - Distributed UFLS demand response
 - Energy Storage (ES) & AMI

A Balanced Scorecard (BSC)

- Economics
- Environmental
- Social Customer equity
- Technical
 - Effectiveness
 - Uptake
- Commercial
 - IPP contracts <10% RE</p>

CASE STUDY - Carnarvon

Selection Criterion:

PV penetration exceeding current limits

Horizon Power owned P/S

New P/S under construction

- Opportunity to implement innovative enhancement strategies
- Centralised wind energy integration envisaged

Outlines

Introduction
Problem definition
Methodology
Analysis of results
Conclusions
Discussion

Network Fault Studies

Impact of network faults on distributed PV

Network Fault Studies

 Faults near to P/S, voltage depression
 Faults away from P/S, system frequency dips (due to high R/X ratio)
 PV inverters may trip on UV or UF

"Adverse impacts on power station stability"

Frankfurt (Germany), 6-9 June 2011

PV Fault Ride Through

- Investigate effects on PV of network faults followed by feeders trip and reclose
- Determine effectiveness of PV FRT functionality

"PV FRT enhances system reliability"

BSC for Carnarvon

BALANCED SCORECARD		NR	UFRO	FRT	UFLS	ES	AMI	Ex SR
		1	2	3	4	5	6	7
ECONOMIC	соѕт							
ENVIRONMENTAL	EMISSION							
	EQUITY							
SOCIAL	ACCEPTABLE							
TECHNICAL	EFFECTIVE							
	UPTAKE							
COMMERCIAL	IPP CONTRACT							
OPERATION	SIMPLICITY							
	Legend:	Good	Fair	Poor	Bad			

Summary – Case Study

Network Reinforcement (NR) recommended
UFRO recommended for new P/S
PV FRT considered, improve reliability

Proven technology, uptake?

UFLS – uptake?, effectiveness?
Energy storage – cost barrier
AMI – uptake?, cost
Extra SR – commercial contract, more emission, cost

HORIZON

Spinning reserve

(Based on N+1 operating philosophy)

POWER

Possibility of Higher PV Penetration

Outlines

Introduction
Problem definition
Methodology
Study results
Conclusions
Discussion

Conclusions

- Small power system supply quality is susceptible to level of distributed PV penetration
- **D** Expectation to accommodate distributed PV
- Our deterministic limits based on spinning reserve may be too conservative
- There are opportunities to increase decentralised PV penetration limits using a risk based probabilistic approach e.g.
 - Probability of not all PV disconnecting following faults
 - Probability of fault frequency (fault rate)
 - Probability of PV output not at installed capacity (temperature, cloud cover, incident angle, etc.)

Outlines

Introduction
Problem definition
Methodology
Study results
Conclusions
Discussion

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

