

MAXIMISING PENETRATION OF ACTIVE POWER BY DISTRIBUTED GENERATION ON A REAL SYSTEM

MEDEIROS JR – FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE

BRAZIL

Contents

Introduction

- Maximizing Distributed Generation solving a conflict by means of an optimization problem
- Adopted solution
 - Problem Formulation, Particle Swarm Optimization
- Simulations
 - Network Characteristics, Results
- Conclusions

Introduction

- Energy security and environmental: renewable sources (RS)
- Brazil Electricity: hydraulic others RS auctions of biomass and wind energy
- Self-energy producers, from sugar cane bagasse.
- Distributed Generation (DG): Technical and economic impacts in distribution networks (DN)
- Multiple accesses individual contributions
- Particle Swarm Optimization (PSO)

The Optimization Problem

- Active power injections unity power factor at the Point of Common Coupling
- No additional onus to Distribution Company: global losses with DG limited (base case)
- From the Utility's point of view, unit production costs of the different producers are not relevant.
- Optimum: highest total active power delivered by the set of autoproducers, without violating operational limits of the distribution network.

Problem Formulation

Partial objective functions

DG:

$$f_{dg} = \sum_{i=1}^{n} (1 - P_{gi} / P_{nom, gi})$$
(1)

Losses:

$$f_{losses} = \frac{(Losses - Losses_{CB})^2}{Losses_{CB}}$$
(2)

Voltage:

$$f_V = \sum_{i=1}^{n} (V_i - V_{ref})^2 / Vref$$
(3)

n: Number of buses;

 P_{gi} : Generated active power at the bus i;

P_{nom}, _{gi}: Rated active power of DG at bus I;

Losses – Losses calculated at each iteration of the whole algorithm;

 $Losses_{BC}$ – Losses of the base case;

Vi – Voltages of the bus i calculated at each iteration of the algorithm;

Vref – Reference voltage (equals the average of limit values).

Problem Formulation

Global objective function, including penalty function:

$$F_{ob} = f_{dg} + f_{losses} + f_{v} + f_{penalty}$$
(4)

Penalty function: losses, voltage and current violations:

$$f_{penalty} = a.p_{losses} + b.p_{Vmax} + c.p_{Vmin} + d.p_{Imax}$$
(5)

Problem Formulation

fpenalty:

$$p_{losses} = \frac{Losses - Losses_{CB}}{Losses_{CB}}$$
(6)

$$p_{Vmax} = \frac{\sum_{i=1}^{n} (V_i - V_{max})}{V_{max}}$$
(7)

$$p_{Vmin} = \frac{\sum_{i=1}^{n} (V_{min} - V_i)}{V_{min}} \tag{8}$$

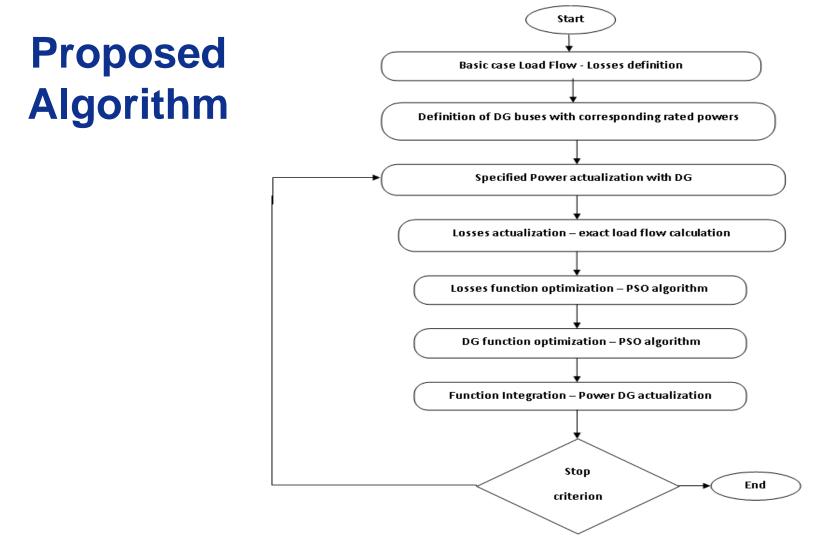
$$p_{Imax} = \frac{\sum_{j=1}^{b} (I_j - I_{max})}{I_{max}} \tag{9}$$

Were:

- *Losses:* losses, for each particle at each iteration;

Losses_{CB}: losses of base case;
V : voltage calculated from node *i* for each particle at each iteration;

 $-V_{max}$ and V_{min} : maximal and minimal acceptable voltages for node *i*; -*I*: current calculated from branch *j* for


each particle at each iteration;

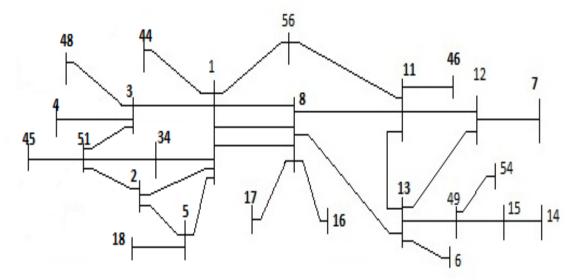
- *b*: number of branches;

- I_{max} : thermal limit for branch *j*.

Frankfurt (Germany), 6-9 June 2011

Particle Swarm Optimization

- A set of vectors (particles) with DG injections is the population to representing possible solutions
- Each vector is specified by a position (x) and a velocity (v) in each iteration k:


$$v_j^{k+1} = w * v_j^k + c_1 * r_1(pbest_j^k - x_j^k) + c_2 * r_2(gbest^k - x_j^k)$$

$$x_j^{k+1} = x_j^k + \nu_j^{k+1}$$

- **pbest:** best particle tested by the *Fob* at actual iteration
- gbest: best particle tested by the Fob for all iterations already performed
- When Fob is minimized, gbest is the solution Medeiros JR – Brazil - Session 5 – Paper 0093

Network A: 25 nodes, 42 branches, weakly meshed, total supply of 457 MW.

HV distribution system 69 kV – R. G. do Norte, Brazil.

Network B: IEEE 14 bus test system

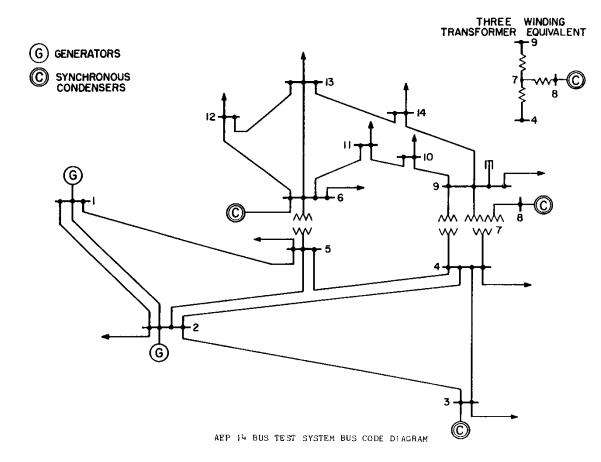


Table 1: Maximal penetration of DG for Network A DG7-70 MW and DG56-105 MW (rated)

Simulations	1	2	3	med		
iterations	7	9	8	8		
Percentage of DG (DG/DG rated)						
	66,5	68,1	67,9	67,5		
DG7	%	%	%	%		
	100,0	99,6	100,0	99,9		
DG56	%	%	%	%		
Relative losses	97,8	99,8	99,7	99,1		
to base case	%	%	%	%		

Table 2: Maximal penetration of DG Network A DG7-70MW and DG18-105MW (rated)

Simulations	1	2	3	med			
iterations	9	8	9	9			
Percentage of DG (DG/DG rated)							
	58,5	61,3	61,4	60,4			
DG7	%	%	%	%			
	58,4	58,7	58,7	58,6			
DG18	%	%	%	%			
Relative losses	97,1	99,1	99,9	98,7			
to base case	%	%	%	%			

Table 3: Maximal penetration of GD Network B DG3-20MW and DG4-30MW (rated)

Simulations	1	2	3	med		
iterations	4	5	5	5		
Percentage of DC (DC/DC rated)						
Percentage of DG (DG/DG rated)						
	82,1	80,0	85,5	82,6		
DG3	%	%	%	%		
	57,9	54,2	51,8	54,6		
DG4	%	%	%	%		
Relative losses to	71,6	72,6	72,2	72,1		
base case	%	%	%	%		

Conclusions

- This study provides a methodology to specify the maximal absorption capacity of generators in previously defined nodes of a system. It can be used in studies of planning of the operation and expansion of the grid, as well as a reference to other studies.
- Metaheuristic algorithms may produce different results at each simulation. However, the methodology embedded in the PSO proposal presents small errors between the various simulation's repetitions.

Frankfurt (Germany), 6-9 June 2011

Thank you for attention