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0B0BABSTRACT 

A high degree of variability reduces the available capability 
of Distributed Generators (DGs) based on renewable 
energy sources because their power output is uncertain. To 
determine the true available capability of this kind of DG, 
this uncertainty must be reduced so that these DGs can be 
regarded as a reliable alternative. In this work, an efficient 
forecast system for DGs with uncertainties in the primary 
energy source is proposed. The power generation 
uncertainty of these DGs is reduced by running a multi-
objective optimization algorithm in multiple probabilistic 
scenarios combining the Monte Carlo method and the 
Markov models. 

1B1BINTRODUCTION 

The need for more flexible electrical systems, technological 
advances, rising global fuel prices, and a renewed interest in 
environmental issues are playing a key role in the 
development of distributed generation, considering the 
benefits that they can bring to electrical systems and to the 
environment [1]-[4]. 
Generally, the power generated by Distributed Generators 
(DGs) based on Renewable Energy Sources (RES) varies 
considerably over time. A high degree of variability reduces 
the available capability of these DGs because their power 
output is uncertain. To determine the true available 
capability of this kind of DG, this uncertainty must be 
reduced so that these DGs can be regarded as a reliable 
alternative. 
In this work, an efficient forecast system for DGs with 
uncertainties in the primary energy source is proposed. The 
power generation uncertainty of these DGs is reduced by 
running a Multi-objective Optimization Algorithm (MOA) 
in multiple probabilistic scenarios through the Monte Carlo 
Method (MCM), and defining the time series associated 
with the active power generated by such DGs through the 
Markov Models (MkvM). 
The formulated problem is of a mixed integer non-linear 
programming nature. The objectives to be minimized are 
active power generation of the DGs and losses in branches 
of the distribution network. 
For each DG, a set of discretized Generation States (GSs) is 
defined, and the MkvM are described in terms of the 
transition probabilities which determine the probability of 
moving from an initial GS i to a final GS j. These 
probabilities depend on collected statistical data (e.g., wind 
or solar radiation) and they form a matrix of transition 
probabilities. A very small number of GSs does not 
adequately represent the operation of the DGs, while a very 
large number of GSs could introduce large forecast errors. 

The best number of GSs, i.e., the best size of the matrix of 
transition probabilities, is defined through a method 
proposed in this work. 
The main contributions of this work are listed below: 
 The uncertainty of DGs based on RES is reduced by a 

proposed efficient forecast system. 
 It calls for more active participation of DGs due to their 

potential benefits and increasing penetration into the 
system. 

 To bring simulations to the real operation of a 
distribution system, the expansion of the time horizon of 
the method (several states of customers demand and 
DGs generation) is considered. 

2B2BMATHEMATICAL FORMULATION 

The proposed mathematical formulation of the multi-
objective optimization problem (for each time t  in the 
study time for evaluation of the system  ), is shown below. 
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current limit in branch km. 
Expressions (1) and (2) represent, respectively, the 
minimization of the active power generated by the DGs and 
the active power losses in branches of the network. Buses 
active and reactive power balance constraints are 
guaranteed in (3) and (4), respectively; active and reactive 
power outputs of the DGs must be within operational limits 
according to (5) and (6), respectively; bus-voltages must be 
within regulated limits (7); and branch-currents must be 
within their limits (8). 

2B2BSOLUTION METHODOLOGY 

To reduce the uncertainty of DGs based on RES, an 
algorithm combining the MCM and the MkvM is 
implemented in this work. 
To have an overall view of the solution methodology, the 
main parts that compose it are presented in Fig. 1. 
 

 
Fig. 1. Overall scheme of the solution methodology 

8B8BUUMarkov Models 
The MkvM represent a stochastic process that moves 
through discrete time steps. A stochastic process with a 
random variable which takes a value from the initial state Si 
in the period  , is said to satisfy the hypothesis of first-
order MkvM if, to move from Si to the final state Sj (i, j   
{1, …, m}; where m is the total number of states), the 
process depends only on the state in the period 1   [5]. 
According to this theory, it is possible to formulate the 
matrix of transition probabilities Pr  (9). 
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According to this representation, each row of this matrix 
corresponds to the current state of the process, whereas each 

column corresponds to the next possible state. The element 

ij
p  of Pr  can be calculated as the number of transitions 

from the state Si to the state Sj divided into the number of 
occurrences of the state Si (where an occurrence is defined 
as the number of times in which the random variable is in a 
state). 
In this study, the random variable of the time series 
represented by the first-order MkvM is the active power 
generated by each, and each state Si is renamed as GSi. An 
example of the discretization in five states of the maximum 

active power generation of a DG, say maxP , is shown in Fig. 
2. For clarity, only the probabilities from state three, i.e., the 
third row of Pr , are presented in this figure. 
 

 
Fig. 2. Discretization of the active power generation of a DG 

Best Size of the Matrix of Transition Probabilities 
As presented above, the transition probabilities depend on 
collected statistical data (e.g., wind or solar radiation) and 
they form a matrix of transition probabilities. However, 
choosing the appropriate number of discretizations, that is, 
the size of the matrix of transition probabilities, is very 
important for the efficiency of the forecast system. A very 
small number of GSs does not adequately represent the 
operation of the DGs, while a very large number of GSs 
could introduce large forecast errors. The best size of the 
matrix of transition probabilities is defined through a 
method proposed in this work, which flowchart is presented 
in Fig. 3. 

 
Fig. 3. Flowchart of the proposed method to define the best size of the 
matrix of transition probabilities 
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In Block A of the flowchart of Fig. 3, the deviations vector, 
say dev, is obtained by simulating the random variable 
(active power generation of a DG) using the matrix of 
transition probabilities built for m GSs, and registering the 
number of times in which a deviation between GSs occurs. 
Deviations between GSs are defined as the absolute value of 
the difference between predicted and true GSs. Thus, for 
example, for a case with m = 5 and assuming that the 
predicted value of current simulation is GS3, a deviation of 
value 2 occurs if the corresponding true value is GS1 or 
GS5. Note that, for m = 5, the maximum deviation occurs 
when the predicted value is GS1 and the true value is GS5 
(or vice versa). 
To choose the maximum relative deviation for n 
discretizations and m GSs in Block B of Fig. 3, say 

,m nMRD , the relative deviations ,m n

i
RD   (  i = 1, 2, …, n)  

in expression (10) must be calculated. The relative deviation 

i, ,m n

i
RD , is the number of equivalent deviations, from the 

vector dev, when the active power generation of the DG is 
redefined to n discretizations. As an example, consider a 
case with m = 5 and vector dev = [843 397 96 6 1], and 
suppose that the relative deviations for n =2 are being 

calculated. In this case, 5,2

1
RD  = 843 + 397 + 0.5 × 96 and 

5,2

2
RD  = 0.5 × 96 + 6 + 1. The aim of using relative 

deviations is to consider all possible discretizations (from n 
= 2 to n = m) for choosing the best size of the matrix of 
transition probabilities. 
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The average of the maximum relative deviations for m GSs, 

say mAMRD , is calculated in Block C of Fig. 3 using the 
values obtained in the inner loop, as presented in (11). 
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Finally, the best size of the matrix of transition 

probabilities, say m  , is calculated in Block D of Fig. 3 
using the values obtained in the outer loop, as presented in 
(12). 

 min min max
1max , , ,m m mm AMRD AMRD AMRD   (12) 

8B8BUUPower Flow and Multi-Objective Optimization 
Algorithm 
Bearing in mind factors such as speed of convergence, 
accuracy and robustness, a power flow based on the 
backward-forward method [6] is used in this work. 
The multi-objective optimization is based on the concept of 
Pareto optimality. A solution is said to be Pareto-optimal if 
not one of its objective functions can be improved without 
degrading all others, that is, a solution is Pareto-optimal if it 
is not "dominated" by others. The MOA implemented in 

this work is based on an evolutionary optimization 
technique known as Strength Pareto Evolutionary 
Algorithm 2 (SPEA2) [7]. 

8B8BUUMonte Carlo Method 
The MCM is based on random simulation of scenarios to 
mimic the operation of a real system and determine the 
future behavior of a random variable.  
In this work, the historical variations of the random variable 
(active power generation of the DGs) will be characterized 
by transition probabilities between discrete states, obtained 
from the MkvM. Each simulated scenario is defined as an 
observation. The algorithm to perform the MCM is 
presented below [8]. 
 Step 1. Choose  . Choose the total number of 

observations  . Set the observations counter 1k  .  
 Step 2. Set 0t  . For each DG, define an initial GSi, 

i.e, an initial upper limit of active power generation. 
 Step 3. For each DG, generate an uniform random 

number between 0 and 1. Link these numbers to 
ij

p , 

from the Pr  matrix associated to the corresponding 
DG, to move from the current GSi to the next GSj, i.e., 
to define the upper limit of active power generation at 
the next time instant t . 

 Step 4. The simulation will increase from the current 
reference to the time corresponding to 1t  . 

 Step 5. Perform the MOA considering that, for each DG, 
the upper limit of active power generation is determined 
by the corresponding GSj. Store the results (set of non-
dominated solutions).  

 Step 6. If t   , then set 1k k   and go to the next 
step. Otherwise, set GSi   GSj  and return to Step 3. 

 Step 7. If k  , then set 0t   and GSi   GSj , and 
return to Step 3. Otherwise, stop. 

Note that, as a result of the MCM implementation,   
sets of non-dominated solutions will be obtained. In a 
pessimistic scenario, the proposal is to select the set of non-
dominated solutions with the worst solutions when 
compared to the corresponding sets of non-dominated 
solutions for each time t . 
Another important issue is the criterion used for selecting 
the solution of the set of non-dominated solutions for each 
time t . This depends on the interests of the system 
operator; however, in this work, the proposal is to select an 
intermediate solution, which represents a trade-off between 
the total active power generated by all DGs and the total 
active power losses in branches of the network. 

2B2BTESTS AND RESULTS 

To show the efficiency of the proposed forecast system, 
several tests were performed considering five DGs (wind 
turbines) in a modified IEEE 37 bus distribution test system, 
which is shown in Fig. 4. 
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Fig. 4. Modified IEEE 37 bus distribution test system 
 
The best sizes of the matrices of transition probabilities for 
DG1 to DG5 , obtained with the proposed method, are 6, 5, 
7, 6 and 6, respectively. 
The average absolute deviations of predicted values with 
respect to true values for DG1 to DG5 are 1.47, 1.55, 1.78, 
1.24 and 1.87, respectively. True and predicted values for 
transitions between GSs and occurrences for DG5 (which is 
the DG with the worst average absolute deviation) are 
presented in tables I, II and III. Low errors show the high 
accuracy of the proposed forecast system. 
 
Table I. True and predicted values for transitions between GSs for DG5 

1 2 3 GSj 
GSi True Pred. True Pred. True Pred. 

1 34346 34624 388 375 10 8 

2 475 487 1697 1553 223 218 

3 3 4 175 170 232 207 

4 0 0 11 8 98 85 

5 0 0 0 0 35 38 

6 0 0 0 0 0 0 

 
Table II. True and predicted values for transitions between GSs for DG5 
(continuation) 

4 5 6 GSj 
GSi True Pred. True Pred. True Pred. 

1 0 0 0 0 0 0 

2 15 15 2 1 0 0 

3 117 105 25 20 8 5 

4 241 207 87 74 35 27 

5 80 65 547 609 207 197 

6 89 91 145 139 709 668 

 
Table III. Occurrences for DG5 

Occurrences 
DG5 

   
   GSi 

True Pred. 

1 34744 35007 

2 2412 2274 

3 560 511 

4 472 401 

5 869 909 

6 943 898 

Results regarding active power losses in branches of the 
network and active power generation of the DGs are 
presented in Figs. 5 and 6, respectively. The results show 
the improvement of the losses when compared to the base 
case (without DGs). 
 

 
Fig. 5. Active power losses in branches of the network 

 
Fig. 6. Active power generation of the DGs 

CONCLUSIONS 

An efficient forecast system for DGs with uncertainties in 
the primary energy source is proposed in this work. In this 
forecast system, the generation uncertainty of these DGs is 
reduced using a method which combines the MCM and the 
MkvM. 
The best size of the matrices of transition probabilities 
between GSs of the DGs is defined through a proposed 
method. The aim of this method is to represent adequately 
the operation of the DGs by finding the best number of 
discretizations of their active power generation outputs and, 
at the same time, by reducing forecast errors. 
The efficiency of this method was proved by the results of 
tests performed in a 37 bus distribution test system 
considering 5 DGs. Low differences between predicted and 
true values show the high accuracy of the proposed forecast 
system. 
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