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ABSTRACT 

Power quality monitors (PQM) are required to be installed 

in a power supply network in order to assess power quality 

(PQ) disturbances such as voltage sags. However, with few 

PQMs installation, it is difficult to pinpoint the exact 

location of voltage sag. This paper proposes a new method 

for identifying the voltage sag source location by using the 

artificial neural network (ANN).  Radial basis function 

networks are initially trained to estimate the unmonitored 

bus voltages during various sags caused by faults. Then 

voltage deviation of system buses is calculated to pinpoint 

voltage sag location. The validation of the proposed 

methodology is demonstrated by using an IEEE 30 Bus test 

system. The results shows that the proposed method can 

correctly locate the voltage sag source based on highest 

voltage deviation obtained through estimated unmonitored 

bus voltages. 

INTRODUCTION 

The quality of electric power has been the major concern for 
both electric utilities and end users of electric power. The 
reasons for the increased concern are due to the rapid 
growth in the industrial equipment with microprocessor-
based controls and power electronic devices. These devices 
are more sensitive to power quality variations and any 
failure may have much more serious consequences in terms 
of technical and economic losses. Among the power quality 
problems, the voltage sag is the most significant problem 
due to its severity and number of occurrences per year. To 
mitigate it, undoubtedly, the voltage sag source has to be 
identified first. There are various available methods that 
have been successfully simulated and tested using extensive 
simulations, laboratory tests and field testing. Those 
methods can be categorized into two broad areas which are 
single power quality monitor (PQM) methods and multi 
PQM methods. 
In single power quality monitoring the aim is to identify the 
relative location of the voltage sag source. In [1], an energy-
based method was proposed that can detect the voltage sag 
source location during a disturbance event by sensing the 
change in instantaneous power flow. However it relies on 
the degree of confidence of both disturbance power and 
energy.  Another method uses distance relay algorithms to 
figure out the fault location in which its basic idea is to 
analyse the impedance value during the event [2]. The 
polarity of the real current component and the slope of 
system trajectory method was introduced in [3, 4] in which  

 
 
the relationships between the product of voltage magnitude 
and power factor against current magnitude was determine 
the sag location relative to the monitoring point. Another 
alternative way introduced in [5] can determines the sag 
source location without using line-fitting method but 
applying the same concept as slope of system trajectory 
method. There is another method that is very effective in 
detecting sources of asymmetrical voltage sags as in [6]. It 
uses Clarke’s transformation and new generalized current-
based concept.  
The proposed method in [7] is capable to locate a sag 
source when the current measurement is not available 
because it requires two points of voltage value only. The sag 
source location estimated by this method is mainly focused 
at the interconnection point of transmission utilities based 
on voltages sag magnitude at both sides of the transformer 
that interconnects two grids. With the drastically increasing 
in energy consumption nowadays, it prompts the utility 
sectors to expand the power transmission network to other 
regions. Hence, the bulk power system can hardly be 
maintained by single PQM methods since those methods are 
able to detect the sags in upstream or downstream direction 
relative to the monitoring point. 
Thus, multi PQM methods have been introduced to support 
this drawback. The multi PQM voltage sag source location 
methods use more than one PQM in the network. The data 
collected from each PQM in power network are processed 
to determine the sag source location.  
The method proposed in [8] is capable of identifying the 
voltage sag if it is originated from a bus in the system. It 
establishes a bus voltage relation coefficient matrix for 
power system observation. The coefficient matrix was then 
used to determine the behaviour of change in voltage of a 
given bus to that of the other buses. Another way to identify 
the voltage sag source location with limited available 
voltage measurement devices installed in the transmission 
network was introduced in [9]. It uses the changing current 
on each branch to know sag source area. As proposed in 
[10], the hybrid method hires the multiway principal 
component analysis (MPCA) as a dimension reduction tool 
to detect the sag source location in power network by 
examining and verifying the real data gathered from 
substations. The result presented certifies the powerfulness 
of the developed hybrid for locating sags. 
This paper aims to estimate of unmonitored bus voltages 
from the available bus voltage recorded by PQMs is using 
ANN and identify sag source location by using voltage 
deviation from the estimated voltages and steady state 
voltages. 
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RADIAL BASIS FUNCTION NETWORK (RBFN) 

Radial basis Function offer several advantages compared to 

Multilayer Perceptron (MLP) ANN. Firstly, they can be 

trained using fast two stages training algorithm without the 

need for time consuming non-linear optimization 

techniques. Secondly, the RBFN possesses the property of 

best approximation [12]. The architecture of the RBFN as 

depicted in Fig. 1 has been utilized in this project under 

MATLAB platform. The network consists of three layers: 

an input layer, a hidden layer and an output layer. The 

output of the RBFN network simply sums the weighted 

basis function without using any activation function. 
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Fig. 1. Simple RBFN. 

SAG SOURCE IDENTIFICATION USING RBFN  

This research is carried out by modelling and simulating the 

power systems, creating sag databases, training and testing 

ANN to pinpoint the sag location using voltage deviation 

index. The stages of the methodology are explained next. 

Creating sag database 

In the research work, the IEEE 30 Bus test system is 

constructed and simulated using Digsilent software to 

identify the RMS voltage value at every single bus during 

both the steady state and fault period. In this system, Bus 1 

is the slack bus, Bus 2 is the voltage controlled bus, Buses 

5, 8, 11 and 13 are synchronous condenser buses and the 

remaining buses are the 24 load buses. This test system has 

three different voltage levels, that is, Buses 11 and 13 are at 

11kV, Buses 1 to 9 and 28 are at 132kV and the remaining 

buses are at 33kV level. The PQMs are assumed to be 

installed at Buses 10, 18, 25 and 29 as marked in red in Fig. 

2. PQM installed at Bus 10, it is connected to Buses 6, 9, 

11, 17, 19, 21 and 22. PQM at Bus 18 is connected to Bus 

15 and Bus 19 and PQM at Bus 25 is connected to Buses 

24, 26 and 27. Furthermore, Monitor at Bus 29 is connected 

to Bus 27 and Bus 30. 

After modelling the bus test system, different types of fault 

are simulated at each bus which inclueds single phase to 

ground fault at phase A, two phase to ground fault at phase 

B and C and three phase short circuit at every bus 

respectively for a short duration of time For all cases, the 

simulations are repeated with fault resistance 0.0 Ω, 0.1Ω, 

0.3Ω, 0.5Ω… to 1.3Ω. Theoretically, during short circuits, 

bus voltages throughout the network will be depressed and 

the severities of which are dependent of the distance from 

each bus to the point where the short circuit occurs.  In each 

simulation, the minimum per unit RMS voltage value stored 

as sag data. Finally, three different sag databases are created 

for single phase to ground fault, two phase to ground fault 

and three phase short circuit respectively. 

 

 
Fig. 2. IEEE 30 Bus test system 

Creating and pre-processing the input and target 

After the simulation data has been fully collected, the 

second step is to create the training and testing data for 

RBFN. The sag databases of different fault types are then 

mapped into the range between -1 to 1. Next, they are 

divided into two main parts which are target data (T) and 

input data (D). In the IEEE 30 Bus test system, the PQMs 

are assumed to be installed at Buses 10, 18, 25 and 29. 

Hence, those buses are considered as the input data (D) for 

developing ANN network. On the other hand, those Buses 

without PQMs are taken as the target data (T). 

Structure of the proposed RBFN 

In this work, RBFN with one hidden layer and one output 

layer has been chosen. The proposed method is elaborated 

by designing an appropriate RBFN to estimate the voltage 

value for unmonitored buses in the IEEE 30 Bus test system 

for each type of fault. Therefore 3 similar independent 

networks are created for three phase, double line to ground 

and single line to ground faults.   

The input data (D) for developed ANN contains those PQM 

buses RMS voltage value (V10, V18, V25 and V29) during 

faults and the target/output parameter, (T) which are RMS 

voltage value for unmonitored buses during faults. This is 

considered as 4 inputs and 26 outputs. Therefore the 

networks have four input neurons and twenty six output 

neurons. Fig. 3 shows the structure of the network. 

Network training and testing 

The training of the RBF ANN consists of choosing proper 

spread value so that the weights and biases in connections 

between the layers are such that it produces performance 

between output values over the set of training input-output 
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vector pairs. Hence, the training process is repeated by 

changing the spread value systematically to find the most 

suitable spread constant for the network. Table 1 shows the 

mean average error (MAE), sum of square error (SSE) and 

mean square error (MSE) results obtained for various 

spread constants that is used in training the IEEE 30 Bus 

system for single phase to ground fault. Therefore, the 

spread constant 1 is considered as the most suitable value 

for this network. 

 
Fig. 3. The structure of the training and testing network 

 

Table 1.The MAE,MSE and SSE calculation results for 

various spread constants 
SPREAD MAE MSE SSE 

25 0.0642 0.0145 22.5343 

15 0.0374 0.005 7.77428 

10 0.0312 0.0038 5.9528 

5 0.0172 0.0014 2.2114 

2 0.0066 1.90E-04 0.2907 

1 0.0017 2.21E-05 0.0339 

 

Voltage Deviation Calculation 

After the network is trained network, a new set of data is 

created by performing short circuit test using different faults 

resistances that are not used in training phase. Then, the 

voltage deviations for each bus are calculated using steady 

state RMS voltages and during sag RMS voltage obtained 

from ANN. The voltage deviation can be expressed as: 
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After calculating the voltage deviation, it is rescaled into 0 

to 1 range. One shows the highest deviation and 0 indicates 

the smallest deviation from the steady state. The rescaled 

outputs are plotted in mesh graph with the aid of colour 

map. The graphs can clearly show the sag source location 

by having the highest peak marked dark red colour in 

graphs. The highest voltage deviation determines the sag 

source location. In the testing stage, the network can almost 

instantaneously calculate output for a given an input testing 

data. The time taken for a network to produce output 

samples is 0.2694 second. 

The implementation procedures in the fault identification 

are presented as follows:  

Step 1: Obtain sag databases from the simulation.  

Step 2: Assemble and pre-process the training data for the 

RBFN. 

Step 3: Create the network object and train the network. 

Step 4: Test and network performance analysis. 

Step 5: Stored the trained network.  

Steps (1–5) are offline processes. Next, the network is ready 

to test with the new input, which is an online process. 

Step 6: The new input is pre-processed before presented to 

the trained RBFN. 

RESULT AND ANALYSIS  

The voltage deviation is calculated by using estimated 

voltages from ANN for all three faults and they are rescaled 

into 0 to 1 range. The highest deviation determines the sag 

source location.  

The mesh plot shows in Fig. 4 shows the voltage deviation 

of buses when tested for three phase short circuit. The dark 

red colour in the graph represents the highest voltage 

deviation. On the other hand, the dark blue colour 

represents the lowest voltage deviation from steady state.  

From the figure it can be noted that the maximum (dark red 

colour) voltage deviation value appear on the diagonal 

element which corresponds to the sag location (Y axis) 

when the fault happens on that Bus (X axis). Hence, it can 

be concluded that the sag source buses experienced the 

highest voltage deviation as compared to other buses which 

are away from sag source. For example, the cursor in the 

graph shows that the Bus 3 located at the experience the 

highest voltage deviation which is 1, when the fault take 

place at location Bus 3.    

 

 
Fig. 4. The mesh graph of the voltage deviation of all 

buses when tested with three phase short circuit 

 

To further evaluate the performance, Fig. 5 shows the 

voltage deviation of all buses when tested with two phase to 

ground fault. However, in this graph, the highest voltage 

deviation appearance at the diagonal is not very consistent. 

This is because some buses that experienced highest voltage 

deviations are different from the sag source buses. For 

example, the sag source at Bus 21 does not provide highest 

voltage sag at Bus 21 but the highest voltage sag is 
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experienced at Bus 12. Inaccurate detection generally 

observed when faults have high impedance resistance. 

 

 
Fig. 5. The mesh graph of the voltage deviation of all 

buses when tested with two phase to ground fault 

 

Finally similar test were conducted for single phase to 

ground faults and its results are depicted in Fig. 6.  In Fig. 6, 

the mesh graph of voltage deviation for buses when tested 

with single phase to ground fault are shown. By looking at 

the shape of this mesh graph, highest voltage deviations at 

the diagonal elements can be easily visualized. Hence, it can 

be concluded that the network had successfully estimate the 

values for unmonitored buses and locate the voltage sag 

source. In this case only one misdetection was observed in 

which Bus 1 is detected as sag source instead of actual fault 

location which is Bus 3.  The cursor in this graph shows this 

case. 

 

 

 
Fig. 6. The mesh graph of the voltage deviation of all 

buses when tested with single phase to ground fault 

CONCLUSION  

This paper has presented a sag source location method using 

ANN.  It is implemented by estimating unmonitored bus 

voltages from bus voltages recorded by PQMs. The 

estimated voltages were then used to calculate voltage 

deviation index by comparing the steady state voltages. The 

highest difference values show the location of the sag 

source originated. The results show that the proposed 

method can effectively identify voltage sag source with 

reasonable accuracy. Furthermore, the proposed method is 

computationally efficient and does not involve complex 

calculations. 
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