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ABSTRACT 
In this paper, an effective fault location technique is 
proposed. Using the current samples of the distribution 
feeder measured at the substation, the proposed technique 
first determines the type of fault. Furthermore, an artificial 
neural network (ANN) is trained for each type of fault. The 
ANNs are trained to estimate the fault distance to the 
substation (FDANN).The Inputs of the ANNs are data of 3 
phase voltages, currents and active powers of the feeder are 
measured at the substation in pre-fault and fault stages. The 
proposed method does not need data of loads of consumers. 
The proposed method is tested on IEEE 34-bus test feeder. 
Each ANN is trained by operating patterns. In order for 
ANNs cover the total operating space of the radial 
distribution network; fault location, fault resistance and 
loads are changed in each pattern. The outputs of ANNs for 
the operating test patterns, not presented in the training 
stage, are shown the accuracy of the ANNs. The trained 
FDANNs can estimate fault distance to the substation; even 
the structure of the distribution network is changed. 
Proposed method is effective while the input data are 
contained errors of measuring.   

1. INTRODUCTION 
A few fault location studies have been conducted on the 
distribution systems due to their high complexity and 
difficulty caused by non-homogeneity of line, fault resistance 
and load uncertainly. Previously proposed approaches for 
estimating the locations of distribution line faults consist of 
using voltages and currents measured at the line terminal. The 
methods used in this approach can be divided into two 
categories. The first category uses the high Frequency 
components of currents and voltages caused by the faults 
which start voltage and current travelling waves between the 
fault and the line terminals [1]. This method is similar to that 
proposed for transmission lines and is complex and 
expensive. The methods in the second category use the 
fundamental Frequency voltages and currents at the terminals 
of a line and parameters of the line and loads [2]. The method 
consists of calculating the line impedance as seen from the 
line terminal and uses the calculated impedance to estimate 
the distance of the fault from the line terminals. Reference [2] 
does not consider the dynamic nature of the loads and 
multiphase taps which are normally encountered in such 
cases. Another technique, that uses the fundamental frequency 
components of voltages and currents measured at the line 

terminal, has been proposed for estimating the locations of 
shunt faults on radial distribution lines [3, 4]. The technique is 
suitable for non-homogeneous lines with or without capacitor 
banks and dynamic loads. However, this technique does not 
consider the presence of the laterals in the distribution system. 
Utilities estimate fault locations in distribution lines by 
computing the impedance seen from the line terminal from the 
voltages and currents available from reclosers. The fact that a 
feeder has many branches compounds the complexity of 
finding fault location. This is mainly due to the fact that 
estimating the fault location based on the voltage and current 
signals yields more than one location. In recent years artificial 
neural networks have been proposed as an alternative method 
for solving certain complicated power system problems where 
the conventional techniques have not achieved the desired 
efficiency. In this paper, using data are measured at the 
substation, for each type of fault, an artificial neural network 
(ANN) is trained to estimate fault distance to the substation 
directly. The proposed method does not need data of loads of 
consumers. The proposed method is tested on IEEE 34-bus 
test feeder [5] simulated in DIgSILENT Power Factory 13.2 
software.  The outputs of the ANNs for operating test 
patterns, not presented in the training stage, are shown the 
accuracy of the ANNs. Sensitivity of the proposed method is 
assessed finally. 

2. FAULT LOCATION TECHNIQUE USING 
ARTIFICIAL NEURAL NETWORK 
Proposed technique contains two stages. First, the type of 
fault is determined using current phasors measured at the 
substation. Then an ANN is trained for each type of the fault. 
The ANNs are trained to estimate fault distance to the 
substation (FDANN), directly. The proposed method does not 
need data of loads of consumers. Inputs of the ANNs are data 
of 3 phase voltages, currents and active powers of the feeder 
are measured at the substation in pre-fault and fault stages. 
When a fault is detected, pre-fault active power, voltage and 
current phasors are saved. These are the phasors that were 
calculated one cycle before the inception of the fault. This 
margin is important to avoid an overlap of the pre-fault and 
fault data. Fault data are collected three cycles after the 
detection of the fault. This is done to minimize the effect of 
current of motors. It is worth considering that the distribution 
system is a radial network with many branches. That is why 
multiple fault locations might be selected as candidates. Using 
other protection instruments such as Fault Detector, actual 
fault location might be selected from among probable fault 
locations. 
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2.1. Determination the type of fault 
If one or more of the line currents (Ia, Ib, Ic) are greater than a 
threshold (It) it is assumed that a fault has occurred. The 
magnitude of the zero sequence current increases beyond its 
normal value when a ground fault is experienced. If the 
magnitude of the estimated zero sequence current (I0) is more 
than a threshold (It0) it is assumed that one or two phases are 
short circuited to ground. The type of fault determines from 
the fault current phasors using table 1. 
 

Table 1. Determination the type of fault 
type of 
fault ta II   tb II   tc II   t00 II   

A-G true false false true 
B-G false true false true 
C-G false false true true 
A-B true true false false 
A-C true false true false 
B-C false true true false 

A-B-G true true false true 
A-C-G true false true true 
B-C-G false true true true 
A-B-C true true true - 

 

2.2. Fault location estimator FDANN 
In this paper, a multilayer feed forward neural network is 
adopted and trained for fault location analysis. Figure 1 
illustrates flowchart of proposed method.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Flowchart of the proposed fault location method by 
using the FDANN 

3. SIMULATION STUDIES 
In order to demonstrate the effectiveness of the proposed fault 
location approach, the FDANN is applied for IEEE 34-bus 
test feeder consisting of 34 nodes, 32 lines, 6 spot loads, 19 
distributed loads and 2 shunt capacitors [5]. The capacitors 
are connected to nodes 844 and 848. This feeder is a radial 
network with unbalanced loads and non-homogeneity lines. The 
base voltage of feeder is 24.9 kV. There is a 24.9/4.16 kV 

transformer between nodes 832 and 888. That is why; the line 
between nodes 888 and 890 is 4.16 kV. Nine lines are single 
phase. This feeder is simulated in DIgSILENT Power Factory 
13.2 software. Appendix 1 shows single line diagram of the 
studied feeder. 

3.1. Training data 
In order to ANNs cover the total operating space of the radial 
distribution network; fault location, fault resistance and loads 
were changed in each pattern. Each pattern is contained data 
which achieved from load flow of the feeder in pre-fault and 
fault stages.  In order to the voltage of every node does not 
exceed 0.90pu and 1.05pu; spot loads and distributed loads 
selected properly. For each pattern, steady state pre-fault 
operating condition and fault condition associated with all line 
faults are calculated. Then these values are passed to 
FDANNs for training and testing. Training data should be 
able to represent whole operating space of feeder. For this 
purpose, 2366 patterns are produced for each type of fault as 
follow. For each kilometer of every line 25 short circuits are 
faulted. The location of every fault is selected randomly on 
each line.  In each fault case unbalanced loads are produced 
randomly and fault resistance are produced randomly between 
[0, 50] ohm. Having different voltage level, line between 
nodes 888 and 890 is not presented in training patterns. Each 
case is simulated in DIgSILENT Power Factory 13.2 software 
and 3 phase current phasors, voltage phasors and active 
power phasors of feeder are calculated at the substation. Pre-
fault phasors are calculated one cycle before the inception of 
the fault and fault phasors are calculated there cycles after the 
inception of the fault. The zero sequence current is used as an 
input of FDANNs for presenting effect of ground fault. 

3.2. Training FDANNs 
All 2366 training patterns are divided into two categories as 
training patterns and test patterns. 75 percent of patterns are 
used as training patterns and the others as testing patterns. 
Using Neural Network Toolbox of MATLAB 7.8.0 software, 
individual FDANNs are trained by the algorithm of 
Levenberg-Marquardt. For each type of fault is shown in table 
1, one FDANN is trained. Error of each FDANN for the 
testing patterns, not presented in the training stage, is shown 
in table 2. Error of each FDANN for testing patterns is 
evaluated using equation 1: 

   



n

1i

2
ii YFDn1mse

                                               (1)
  

Where: 
mse: mean squared error 
n: number of testing patterns 
FDi: fault distance to substation of ith pattern 
Yi: FDANN output of ith pattern 
Table 2 shows the test errors of single phase short circuits are 
bigger than the other errors.  
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Table 2. Error of each FDANN for the testing patterns 
type of fault Error of FDANNs for testing patterns (mse) 

A-G 0.024 
B-G 0.028 
C-G 0.026 
A-B 0.0057 
A-C 0.0053 
B-C 0.0058 

A-B-G 0.0030 
A-C-G 0.0035 
B-C-G 0.0032 
A-B-C 0.0016 
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Figure 2. FDANN outputs and target values for the test patterns of 

A-G fault 

 

3.3. Effect of changing of the structure of the feeder 
on performances of FDANNs  
In this paper, performances of FDANNs are assessed when 
the structure of the distribution network is changed. Two new 
structures are assumed for the distribution feeder. In first 
structure (S1), configurations of eight lines are changed; but 
the lengths of them are fixed. The configurations of the lines 
of the network are explained in reference [5]. Table 3 shows 
difference between the basic structure of the feeder and the 
changed structure (S1). Error of each FDANN for testing 
patterns of this new structure (S1) is shown in table 4. Figure 
3 illustrates the outputs of FDANN compared target values of 
the test patterns of A-G fault for S1. Results of table 4 shows 
that the trained FDANNs can estimate fault distance to 
substation; even the structure of the distribution network is 
changed. In second structure (S2), two new lines are added to 
the base network. First line (L1) is connected to node 822. 
The length of L1 is 5km and number of its configuration is 
303 [5]. Second line (L2) is connected to node 840. The 
length of L2 is 5km and number of its configuration is 301 
[5]. Node 822 and node 840 are farthest terminals. Distances 
of nodes 822 and 840 to the substation are 51.11km and 
57.68km respectively. The outputs of the trained FDANNs 
are acceptable when fault occurs on two new lines. Error of 
each FDANN for faults occurred on two new lines are shown 
in table 4.  

  Table 3. Difference between the line configurations of the basic 
structure of the feeder and the changed structure (S1)  

Terminal 
nodes of line 

Length 
of line 
(km) 

Configuration 
of the basic 
structure 

Configuration 
of new 

structure (S1) 
806-808 9.8237 300 301 
850-816 0.1 301 300 
852-832 0.003 301 300 
834-842 0.085 301 300 
820-822 4.188 302 303 
824-826 0.9236 303 304 
846-848 0.1615 301 300 
862-838 1.481 304 303 
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Figure 3. FDANN outputs and target values for the test patterns of 

A-G fault on structure S1 
 

Table 4. Error of each FDANN for the testing patterns of the 
changed structures 

type of fault Error of FDANNs for testing patterns (mse) 
S1 S2 

A-G 0.204 0.181 
B-G 0.208 0.164 
C-G 0.207 0.160 
A-B 0.175 0.162 
A-C 0.171 0.165 
B-C 0.178 0.163 

A-B-G 0.163 0.152 
A-C-G 0.165 0.150 
B-C-G 0.162 0.154 
A-B-C 0.148 0.133 

3.4. Sensitivity studies 
The accuracy of the fault location estimates depends on the 
accuracy of the input data. The accuracy of the voltage and 
current phasors depends on the quality of transducers that 
sample voltages and currents. Sensitivity studies are 
performed to determine the effect of the errors in the input 
data on the accuracy of the proposed technique. The ranges of 
errors in voltage and current phasors are selected considering 
the IEC standards for voltage and current transformers. In this 
paper, for sensitivity study, 2366 patterns are regenerated 
with Errors in voltage phasor magnitudes from -5% to +5% 
while errors for current phasors magnitude are varied from -
3% to +3%. Errors for active power phasors magnitude are 
varied from -7.5% to 7.5%. These new patterns which are 
contained errors of measuring are divided into training and 
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testing patterns. Then for each type of fault, an FDANN is 
trained using the new training data. Table 5 shows the error of 
each FDANN for the testing patterns while all input data are 
contained errors of measuring.  
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Figure 4. FDANN outputs and target values for the test patterns of 

A-G fault on structure S2 (faults on 2 new lines) 

4. CONCLUSIONS 
In this paper, a novel approach has been proposed for fault 
location by means of artificial neural network (ANN) as an 
interpolating tool. The ANNs are trained to estimate fault 
distance to the substation (FDANN) for each type of fault. 
Inputs of the ANNs are data of 3 phase voltages, currents and 
active powers of the feeder are measured at the substation in 
pre-fault and fault stages. The proposed method is tested on 
IEEE 34-bus test feeder successfully. The outputs of the 
ANNs for operating test patterns, not presented in the training 
stage, are shown the accuracy of the ANNs. The 
performances of the trained FDANNs are tested successfully 
when the structure of the feeder is changed. The accuracies of 
the FDANNs are acceptable while data are contained errors 
of measuring.  

Table 5. Error of each FDANN for the testing patterns that are 
contained errors of measuring 

type of fault Error of FDANNs for testing patterns (mse) 
A-G 0.041 
B-G 0.042 
C-G 0.040 
A-B 0.0096 
A-C 0.0092 
B-C 0.0098 

A-B-G 0.0081 
A-C-G 0.0084 
B-C-G 0.0082 
A-B-C 0.0065 
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Appendix 1 
Single line diagram of IEEE 34-bus test feeder: 

 

 


