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ABSTRACT 

This paper draws on several years of experience of 
developing condition based risk models at Northern 
Powergrid, examining how actual experience has 
influenced further model development in particular with 
regard to forecasting techniques and the updating of model 
parameters. Of special interest are the following aspects of 
our experience: degradation forecast error; unforeseen 
effects on asset condition; parameter uncertainty. We 
conclude that, models developed at Northern Powergrid 
provide useful investment decision support in the 
production of robust business plans as long as the model 
limitations are fully understood and managed.  

INTRODUCTION 

In the last decade condition based risk models have started 
to become established within electricity distribution 
networks, fuelled by technological advances in collecting 
and storing condition information; accessibility of models 
already applied within civil infrastructure networks; and a 
desire within DNO’s to make smart decisions. It is 
important though to be aware that it takes time to arrive at a 
model in which the parameters are relatively stable and the 
functionality fully agreed upon. This is due to high levels of 
inherent complexity and uncertainty in particular associated 
i) with forecasting model error; ii) with asset condition 
information not captured due to random/unforeseen effects; 
and iii) with input data and judgements about condition 
bands and weightings. This paper focuses on understanding 
and managing uncertainty in the degradation forecasts and 
on re-evaluation and updating of modelling parameters. 

UNCERTAINTY IN FORECASTING  

Typically the rate of asset health degradation can be 
forecast in condition based risk models either by using 
probabilistic techniques such as Markov chains or via 
ageing curves [1]. 

Choosing the asset health degradation model 
The choice of model will depend on its suitability for the 
type of degradation and also on ease of implementation. A 
curve based model may not be suitable for example for civil 
assets with a key degradation mode of cracking produced by 
random shocks. The use of curves in electrical asset 
reliability modelling has a strong history however and this is 
the approach employed in Northern Powergrid’s models.   

 
Curve descriptions of degradation modes 
Figure 1 shows an example illustrating how a curve can 
capture key features of a degradation model. It shows a 
complex S-shaped curve model for an oil degradation 
process in which there is rapid initial deterioration in oil 
condition, and then a period of equilibrium before 
significant degradation starts to occur due to oxidation, 
ingress of additional water, or tank contamination. Natural 
deterioration is modelled as a drift through time down from 
the good as new overall condition index values towards the 
worst condition value. It is implemented as a weighted 
average between the average and worst deterioration curves. 
 The assumption is that if an item is deteriorating badly it 
continues to deteriorate badly.  Each item in the population 
follows its natural deterioration drift but at each time period 
takes a random displacement step from this drift via use of a 
random walk [2].  
 

 
Figure 1. Complex Switchgear oil degradation model 

 
Suitability and ease of implementation 
Whilst curves such as those in figure 1 are valid for use in 
modelling they can also be fairly complicated both in terms 
of implementation and in determining what the input 
parameters should be. In practice therefore more simplistic 
exponential curve based models have generally been 
implemented in electricity distribution networks. 
A basic exponential curve is valid in engineering terms 
because it accurately describes a degradation mode true to 
most of our assets, of accelerating degradation rates as 
health further deteriorates. It is also a good curve for 
implementation purposes because its mathematical 
properties make it straightforward to use. For example it is 
monotonically increasing which makes it impossible for 
spontaneous improvement to be accidentally modelled, and 
it only relies on two parameters, shape and scale, thereby 
making justifying the inputs more straightforward. 
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Updating the degradation forecast 
The exponential curve has proven suitable for short term 
forecasting. However the approach of using a single 
exponential curve has limitations for long term forecasting 
due to a number of factors. One is that the initial estimate of 
condition degradation may be discovered at the time of last 
inspection to be an under-estimate or over-estimate. In 
reality there are different deterioration rates for different 
items of the same type such as a particularly bad 
environment that a switch is in or a poor standard of 
manufacture. These “hidden” factors can be approximated 
by giving an item a deterioration rate in keeping with its 
previous pattern of behaviour so after inspection it makes 
sense to move the asset to a different degradation curve path 
based on experience as shown in figure 2. 
 

 
Figure 2. Updating degradation curves from experience 

 
Controlling the degradation forecast 
Another feature of the exponential curve that it is difficult to 
control is the escalating acceleration effect so it may be 
necessary to modify the curve at its extremes, or use an 
alternative curve with more terms such as a cubic. A simpler 
solution is to use PF interval concepts to modify the shape 
parameter so that the curve is controlled near its end of life 
to produce a better forecast of time to failure. This second 
modification is also illustrated in figure 2. 
 
Basis for using several curves 
The idea of using more than one curve in this way is 
consistent with delay time modelling concepts which in turn 
are founded on P-F interval reliability theory [3]. A delay 
time model is based around the P-F curve where P is the 
point where a potential failure can be detected and F is 
where the functional failure occurs. The points P and F 
divide an item’s condition into three states. The Delay Time 
model describes a two-stage failure process in which faults 
become visible in the first stage at a point u, and these 
visible faults then cause eventual failure in the second stage. 
The “Delay Time” is the window of opportunity of duration, 
h for preventing failure and is the time between the point u 
at which a defect leading to failure can first be detected and 
the point of failure itself. In order to avoid catastrophic 
failure F can be defined as moving into the worst state that 
an item can be in and in which replacement must occur. 

Hence the Delay Time Model has the three states (0, u), (u, 
u+h) and (u+h, ∞) as shown in Figure 3.  
  

 

u 

Defect identifiable 

u+h 0 

Failure 

g(u) 

f(h) 

 
Figure 3. Delay time modelling concepts 

 
Degradation forecast error 
The trade-off is of model simplicity against forecast 
accuracy and so we expect forecast error in the models. A 
particularly relevant issue is that our forecast only cares 
about what condition banding an asset is in now but not on 
how long it has been there. For example an asset which has 
only just began to suffer surface corrosion will be forecast 
to make a transition to its worst state at the same time as 
another asset which has had visible surface corrosion for 
many years, even though in practice it is more likely that the 
second asset will reach the worst state first. More complex 
models which manage time spent in a state, such as semi-
Markov models, are more accurate but computationally 
intensive and also subject to greater parameter uncertainty. 
An example of this particular issue might be becoming 
apparent now that we have the benefit of having a few 
years’ worth of data for distribution switchgear. Figure 4 
compares two degradation forecasts for year 5 made a year 
apart as illustration. Early results are beginning to indicate 
that the middle category items possibly stay there for a 
longer period than previously forecast. On the other hand 
the poorer category items may degrade to the worst state 
faster than forecast. More data is needed before a firmer 
conclusion can be drawn though and it is also quite difficult 
to isolate where the revised estimate is due to natural 
deterioration as opposed to other factors like inspection 
subjectivity and data quality improvements. 
 

 
Figure 4. Distribution switchgear forecast 
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UPDATING MODEL PARAMETERS  

Learning drives the next model iteration so there is a 
continual need to monitor and update parameters according 
to actual experience. This can take time for the following 
reasons. Firstly the degradation forecast curve parameters 
are uncertain and there is no rich source of electricity 
distribution asset condition histories. This is due partly to 
the fact that electronic condition data collection and storage 
is relatively recent; and partly to data “censorship” in terms 
of assets being removed for safety reasons well before 
failure. It will be many years before we have condition 
histories covering the whole lives of electricity network 
assets and the end of life patterns may never be fully known.  
Secondly, as well as forecasting error due to uncertainty in 
the degradation curve, there is uncertainty in the starting 
conditions from which the forecast is made. This is 
associated both with the input data and with the health index 
parameters. These too need constant re-evaluation but again 
the models, and even the data collection requirements in 
some instances, are recent innovations. The drive to use 
enabling technology in electricity distribution asset 
management has only been in the last two decades [4]. 
Thirdly it is worth stressing the point that the models are of 
the degradation of external condition ratings as an indicator 
of internal deterioration, rather than of internal deterioration 
itself. Therefore the model will capture observed 
degradation of condition but will be missing unobservable 
internal processes. Take wood poles for example; the onset 
of internal decay and the rate of deterioration will vary 
depending on unquantifiable factors, such as the quality of 
the original treatment.  It is not practical, if at all possible, 
to model such parameters. Also, deterioration results from a 
variety of causes apart from the ageing process and is 
influenced by external events. Research and experience in 
these areas can throw up the possibility of extending the 
model to incorporate new information and discoveries.  

Updating the forecast curve’s parameters 
As more years’ worth of experience comes in the suitability 
of the forecasting curve parameters can be re-evaluated 
although it is noted that asset importance and type dictates 
inspection frequency, which can vary from months to years. 
In some cases, notably overhead lines, suitably comparative 
data may only be collected for some assets a few times over 
its lifetime.  In other cases such as cables, for a variety of 
reasons condition data is not collected pro-actively so 
closing the loop in terms of forecast versus actual 
degradation is that much more challenging. 
This paper has discussed already how each year the forecast 
curve’s parameters are re-attuned to its current health index. 
But beyond this is the question of the quality of the shape 
and pace of the expectation curve in general. That is, the 
underlying parameters of the entire forecasting model might 
need updating. For instance, the few years’ worth of 
distribution substation switchgear degradation experience 

indicate a potential need to update the ageing curve 
parameters but we are still in early days to be able to say so 
definitively or to say how it should be done.  

Input data and HI model parameter uncertainty 
Questions of data quality generally and of subjectivity in 
condition inspection measures have already been 
extensively discussed in the research. There has also always 
been the trade-off between the relative merits of using an 
overall index, which is the choice made at Northern 
Powergrid, or of using the separate component measures. 
This has been extensively discussed in research literature. 
"The use of an index (like PCI) to define pavement state 
causes some concern because it is an aggregation of specific 
distress measurements.  Maintenance requirements and 
therefore costs are more directly related to these 
components of the index.  It is also possible that future 
pavement conditions might be more accurately predicted 
from the components of the index …(but)  there could be an 
enormous amount of work involved …" [5]. 
Data uncertainty is managed in the company via annual data 
updates and constantly seeking better data sources. For 
instance we have recently been able to use more in-depth 
partial discharge analysis in place of basic readings 
provided from annual inspections, where it is available.  
Updating the health index model parameters and 
methodology is also a continual process for us. For example 
we have taken advantage of having more plentiful and 
detailed plant condition information in recent years to 
implement a methodology change that supplements a fairly 
age driven health index with the option of using a more 
purely condition driven value. We have also added new 
condition points to the models where appropriate to do so. 
Meanwhile reliability judgements about our various plant 
types are regularly updated as more information comes 
through from failure investigations, dangerous incident 
notices and national equipment defect reports.  By 
exception ad-hoc assessments, such as conductor samples 
and PURL tests (portable ultrasonic rot locator) for 
overhead assets, provide an additional quantifiable view of 
asset health, which can in turn be factored into the current 
and future health forecasts of similar assets that may not 
have been similarly assessed. 

Unforeseen effects on asset condition 
Some assets suffer a sudden shock to health because of 
unpredictable random events such as third party damage, 
damage caused by the weather and the environment, and 
damage caused by birds, animals, and insects. Other assets 
in apparently good health fail because of problems not 
detected by the health index model’s condition indicators. 
Managing this problem involves two aspects:- i) designing 
suitable processes for updating results to reflect operational 
experience; and ii) understanding the bounds around 
average forecasts through probabilistic techniques or from 
use of scenarios that cover unforeseen eventualities. 
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Processes for handling the non-modelled realities include 
careful and auditable evidence-based analysis of reasons for 
unforeseen failure; and recommendations for improved 
techniques to capture these in the model where possible. To 
consider the random events the degradation curve needs to 
be regarded as an average curve existing within a range. It 
has been demonstrated that, for long-term forecasting in 
particular, a probabilistic spread of curves such as those 
shown in figure 1 might be more appropriate [6].  

APPLYING THE RESULTS  

Condition based risk models should be fully transparent and 
comprehensible in terms of their underlying engineering 
sense, reflecting established and well understood 
engineering terminology and classifications. They need to 
be defendable under scrutiny and results need to be 
communicable at a wider business level. In applying the 
results the limitations imposed by uncertainty, in particular 
for long term forecasting should be acknowledged, 
understood and managed. The regular updating of the model 
described in this paper contributes to such management. 
In applying the results it is not unreasonable to assume that 
the assets showing the poorest overall condition can be 
forecast to be doing badly a few years ahead. The problem 
is about how good the longer term forecast is for the assets 
currently in moderate health. At Northern Powergrid 
modelled outputs are used to provide a priority list of 
potential candidates for the short to mid-term investment 
pipeline [7]. These models can also support asset 
management policy decisions, such as determining at what 
health it is optimal to refurbish or replace in terms of 
minimising cost whilst satisfying safety/reliability 
constraints [8]. For longer term strategic decisions such as 
the scale and shape of investment the outputs also provide 
decision support but with full awareness that “we can never 
expect to predict what will happen with absolute 
confidence” [9]. Thus the outputs are regarded as indicative 
rather than as absolutely definitive answers. Overall we 
conclude that, with the level of certainty around the outputs 
fully understood, our models provide useful investment 
decision support in the production of robust business plans 
and are powerful tools in the decision making process. 

FUTURE CHALLENGES  

Increasingly attention is turning in electricity distribution 
networks to building consequences of asset failure into the 
models. This allows risk-based investment decisions that 
consider criticality as well as asset health. Some risk models 
show a health and criticality matrix where the riskiest assets 
are those in the worst health / highest criticality corner of 
the matrix. Others calculate composite overall risk values 
formed from the probability of asset failure (health-based) 
multiplied by consequences of that failure [10]. Typically 
consequences for network performance, environmental, 
safety and financial consequences are assessed. 

Building risk models requires care and attention to 
engineering detail and uncertainty continues to be a 
challenge. Firstly there are difficulties with determining 
failure probability due to issues like electricity distribution 
network failure data being censored by assets not being 
allowed to fail; and asset specific complications such as 
failure recording for very small sections of underground 
cable [11]; and overhead line inter-dependencies meaning 
absolute failure may be caused by one of many component 
parts each having in turn its own functional failure rate. 
Secondly the value of the consequence is determined from 
considerably complex underlying factors. For example 
behind a safety consequence are assumptions about 
probabilities of death or serious injury, and debateable 
judgements about the cost of such incidents. Risk models in 
other industries, such as civil infrastructure, are complex 
and have been developed over many years. We expect the 
same to be true for the electricity industry. 
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