FLEXIBLE PLUG AND PLAY LOW CARBON NETWORKS: QUADRATURE BOOSTER TRIAL AT 33 KV

Gilbert MANHANGWE
UK Power Networks – UK
gilbert.manhangwe@ukpowernetworks.co.uk

Cristiano MARANTES
UK Power Networks - UK
cristiano.marantes@ukpowernetworks.co.uk

Sotiris GEORGIOPULOS
UK Power Networks – UK
sotiris.georgiopoulos@ukpowernetworks.co.uk

ABSTRACT
The ‘Flexible Plug and Play Low Carbon Networks’ (FPP) project aims to facilitate faster and cheaper connections of renewable generation onto the distribution network, by using innovative technical and commercial solutions. A Quadrature Booster is one of the smart devices to be trialled and will be installed at UK Power Network’s 33 kV substation located within the Wissington British Sugar plc (BSP) site in Norfolk. The FPP will trial the first Quadrature Booster on distribution networks to effectively demonstrate the smart approach to network management.

This paper outlines how the FPP project will adapt the already mature Quadrature Booster technology at transmission networks, to innovatively deploy the first Quadrature Booster at distribution voltage using the Wissington 33 kV trial case. The paper discusses (1) the identified network problem, (2) available options to address the problem, (3) how the problem is being addressed, and (4) the benefits accrued from delivering the Quadrature Booster solution.

INTRODUCTION
UK Power Networks was awarded funding under Ofgem’s (GB Energy Regulator) Low Carbon Networks Fund scheme, for the ‘Flexible Plug and Play Low Carbon Networks’ (FPP) project. The project aims to facilitate faster and cheaper connection of anticipated growth in renewable generation onto the distribution electricity network without the need for traditional network reinforcement by, instead, managing network constraints and maximising network utilisation. The project will achieve this through the integration of smart devices, smart applications and smart commercial arrangements. The FPP project is a £10 million project, which commenced in January 2012 and will conclude in December 2014.

It is widely recognised that ‘smarter’ ways of managing distribution network assets include improved utilisation of existing assets. The intended effect is to defer traditional reinforcement where possible. The FPP project will install a 30 MVA rated Quadrature Booster to overcome an existing constraint due to sub-optimal load sharing on 33 kV parallel circuits at UK Power Networks’ Wissington BSP substation. The challenge is compounded by the fact that there is no known Quadrature Booster or Phase Shifting Transformer (PST) being used at this rating and voltage.

A Quadrature Booster consists of two separate three-phase transformers specially connected: a shunt connected unit and a series connected unit. The shunt connected transformer is also called the main or exciting transformer and is fitted with an On-Load Tap Changer (OLTC). The series-connected unit is a coupling transformer. Quadrature Boosters are used to control the flow of real power on three phase electricity transmission networks.

Quadrature Boosters are a mature technology at transmission level. Over the years, Quadrature Boosters have been used to control power flows on parallel three phase transmission networks across the world where capacity is constrained by one of the parallel circuits. In the UK, various Quadrature Boosters are connected to National Grid’s network at 275 kV (750 MVA – 860 MVA units) and at 400 kV (2000 MVA – 2750 MVA units) [1]. Other examples include Quadrature Boosters on interconnectors between France – Italy and the Netherlands – Germany.

The Problem
UK Power Networks’ Eastern Power Networks (EPN) distribution network serves an area of approximately 700 km² between Peterborough and Cambridge in the East of England that is particularly well suited to renewable generation. In line with the Government’s drive for increased renewables generation to meet the Carbon Emissions Reduction Targets, UK Power Networks has experienced increased activity in renewable generation development in this area over recent years, and a rapid rise in connection applications, with 120 MW of wind generation already connected and around 200 MW at the planning stage. The connection of these anticipated levels of wind generation is expected to require significant network reinforcement to mitigate network thermal and voltage constraints and reverse power flow issues.

In order for the FPP project to demonstrate the benefits it can deliver, it is paramount that both the technical solution and commercial framework being developed are adopted by the end-use customer - the distributed

generation developers. UK Power Networks has been monitoring the generation connections activity in the area, and has proactively engaged with seven generation developers seeking connections in the FPP trial area. These seven projects are seeking connection at constrained parts of the trial area network and, as a result, their ‘conventional’ connection quotes include significant costs for provision of expensive sole-use assets. UK Power Networks has identified opportunities to offer cheaper and faster connection through actively managed non-firm connections.

The FPP Quadrature Booster study case is an interconnected 33 kV network with a 70 MW rated Combined Heat and Power (CHP) connection. Interconnected networks give rise to power flows towards the lowest source impedance, which can result in thermal overloads. Under Standard Running Arrangement shown in Figure 1 the Wissington site connection is via three 33 kV circuits running interconnected with four 132/33 kV sites – March Grid, Swaffham Grid, Walsoken Grid, and King’s Lynn South Grid.

The high loading of the teed Downham Market line constrains the Wissington CHP to seasonal export limits, which are at least 23% below the installed turbine capacity. There are also local line current limits on the 3 outgoing 33 kV circuits with a complex generator control system that ensures that the line with the highest electrical load flow is not overloaded (always the teed Downham Market line).

British Sugar plc operates a generator automatic turndown scheme which takes into account the Wissington BSP substation outgoing 33 kV feeder circuit breakers status as well as the analogue measurements [2]. The generator automatic turndown scheme is activated to reduce CHP plant output in order to prevent the teed Downham line exceeding thermal limits.

To increase utilisation of the existing 33 kV line capacities, it is desirable to force the Northwold No.1 circuit to carry more power regardless of its higher impedance.

The Technical Solution: Quadrature Booster

To increase utilisation of the line capacities, the parallel circuits required to be augmented with series-connected impedance addition/reduction capabilities. The added (or compensated) impedance is chosen such that the current is shared between the parallel lines.

Two possible conventional options were considered: (1) Use of a series reactor to boost impedance in the lower impedance line. This was discounted because a series reactor would add a predetermined fixed reactance in the lower impedance circuit to limit power flow to a desired level. Series reactors are mainly used as current limiting devices to reduce fault currents to required levels. (2) Use of series capacitors connected in the higher impedance circuit (to lower the impedance). This was also discounted because, compared to reactors, a number of additional items of equipment are required in series capacitor installations to prevent damaging over-voltages, which can occur during power system faults.

The ‘smart’ innovative option is the use of a controllable device – the Quadrature Booster. This is the preferred ‘smarter’ solution. Load balancing is achieved through discrete on-load controllable steps. This is based on the principle that power flow through a transmission line is proportional to the sine of the difference in voltage phase angle of the sending and receiving end.

\[P = |V_s||V_r|\sin\delta/X_l \]

Figure 1: Wissington Site 33 kV Circuits Interconnections

Wissington CHP installed capacity:
- Generator – 95.2 MVA /0.85 PF (80.9 MW)
- Turbine – 70 MW

The Northwold No.1 and Downham market teed No.2 circuits operate in parallel with differing source impedances. Power transfer is limited by the path of least impedance – the teed circuit to Downham Market.

The full capacity of the lines cannot be used because the teed circuit reaches its full capacity limit when the other two lines are loaded to approximately half their full capacity.

Wissington CHP Seasonal Export Limits
- Summer - 46.0 MW
- Autumn / Spring - 49.5 MW
- Winter - 54.0 MW

Figure 1: Wissington Site 33 kV Circuits Interconnections

Connection And Use of System Agreement (Wissington Sugar Factory), dated 14/05/98, document reference JW12421IBSWIS4, DCC (as revised 06/11/07).
By manipulating the voltage phase angle using a Quadrature Booster, the circuit impedance and therefore the power flow can be controlled to remain within the constrained rating of the weaker circuit. The Quadrature Booster tap position, and hence the added impedance, is chosen such that the current is shared between the parallel lines.

ROLE OF THE QUADRATURE BOOSTER

During the FPP trial the Quadrature Booster will monitor and control the network to balance load flows and create additional headroom capacity to accept increased CHP exports to the distribution network.

Quadrature Booster Design

The 33 kV lines out of Wissington substation are 200mm² Steel Cored Aluminum (SCA) conductor construction type with static seasonal ratings of 23 MVA and 30 MVA in summer and winter respectively. It is assumed that the full rated 30 MVA (winter) of the line to which the Quadrature Booster is connected flows through one winding of the series-connected transformer. The rating of the shunt-connected transformer is less than rated power as it is required to supply reactive compensation only. The Quadrature Booster rating capacity is therefore 30 MVA to match the line rating.

A number of assumptions were also made in the preliminary studies to model the effect of the Quadrature Booster on power flows, fault levels and protection systems using Power Factory Version 14.0 from DigSILENT – power system modelling software. From modelling results the initial Quadrature Booster design parameters – rated impedance, voltage phase angle at maximum tap (buck / boost) etc were also formulated.

The design challenges were compounded by the fact that there were no Quadrature Boosters or Phase Shifting Transformers (PST) being used at this rating and voltage.

The Quadrature Booster (Oil Natural Air Natural (ONAN) cooling) complete with new OLTC was installed in series on the ‘weaker’ teed line. The intended effect is to buck real power flow from Wissington 33 kV and force additional power to flow through Northwold No.1 circuit to achieve a closely balanced load sharing between circuit 1 and 2 without exceeding thermal limits.

The installation of a Quadrature Booster on existing 33 kV network at Wissington had a number of implications to content with – system protection, control, and space requirements.

The Quadrature Booster delivery is carried out business as usual by UK Power Networks’ Capital Programme team. Civil works on site commenced January 2013. The Quadrature Booster is expected to be shipped from Australia in February 2013 with delivery on site in March 2013. Installation commences thereafter. Project milestone agreed with Ofgem for the Quadrature Booster commissioning is the end of June 2013.
The Partners

The FPP Quadrature Booster with a Maschinenfabrik Reinhausen (MR), type OLTC is designed and manufactured by Wilson Transformer Pty Ltd in Melbourne, Australia. The Quadrature Booster Control System is based on MR’s Tapcon 260 relay and is designed and supplied by Fundamentals in conjunction with MR.

Project Outcome

Throughout the project, there has been significant collaboration between Wilson Transformer, Fundamentals, British Sugar plc and UK Power Networks. This collaboration has provided key learning points to introduce the first known Quadrature Booster on the distribution network. The Quadrature Booster trial case has already provided significant technological and reputational enhancement to the project partners, suppliers and collaborators.

By using a Quadrature Booster, a smarter and active management of load sharing between the parallel 33 kV circuits at Wissington provides capability for improving utilisation of the existing lines – resulting in over 10 MW additional capacity headroom available to potentially increase the CHP power export. It is reported that the Wissington CHP achieves the best CHP rating under the government CHP environmental quality assurance scheme. Further increments of generation exports would therefore contribute to low carbon.

British Sugar plc confirmed that there are opportunities across the year when they could operate their highly efficient CHP plant at higher generation capacity but cannot do so because of the restriction from the electrical load flow along the teed Downham Market circuit. The Business as Usual options provided in the past were:

1. A new overhead 33 kV line from Wissington to Swaffham Grid at a cost of £3.0 million. This was liable to a planning consent (Section 37) and a likely 3 year public enquiry.
2. A new underground 33 kV cable from Wissington to Swaffham Grid at a cost of £6.0 million, but would not need planning consent (Section 37).

None of these were considered cost effective business opportunity to British Sugar plc and therefore British Sugar plc continue to run the CHP plant within the prevailing export constraints.

The FPP Quadrature Booster project cost is circa £1.8 million. This is the total forecasted cost for the project including design, construction and installation costs for the Quadrature Booster, the new 33kV switchroom and all associated control and protection systems.

In the example of Wissington British Sugar plc, the Quadrature Booster solution at distribution level is attractive as the estimated costs are clearly favourable compared to the cost of conventional network reinforcement options.

Conclusion

The FPP Quadrature Booster trial case provides both technological and reputational advantage to all involved. As an innovation project a number of challenges are being encountered. Diligent bespoke design requiring continuous liaison between parties involved is one of the success factors. Although a Quadrature Booster provides a smarter way of managing load sharing constraints, it also introduces two lots of transformer losses – series and shunt transformers.

British Sugar plc would be in a position to take advantage of the increased export limits if the Quadrature Booster trial proved a success. However, the amount of increased generation levels to use some of the increased export potential would vary across the year, and would be dependent on economics – the current day gas and electricity prices.

There is great potential for replication of the Quadrature Booster scheme. Future costs are expected to fall significantly as costs for research and development are eliminated.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Tim Golden and Chris Young from British Sugar plc; and Paul Dyer, Azzam Al-Riyami and Jonathon Ratsey from UK Power Networks for their contribution to the work presented. UK Power Networks is also grateful to Ofgem for financial support from the Low Carbon Network Fund.