LOCAL SMART DC NETWORKS AND DISTRIBUTED STORAGE FOR REDUCING AND SHIFTING PEAK LOAD

Simon Daniel
Moixa Technology – UK
simon@moixaenergy.com

Spyros Skarvelis-Kazakos
University of Greenwich – UK
S.Skarvelis-Kazakos@greenwich.ac.uk

Priyanka Jain
Cambridge University – UK
priyankaj@gmail.com

ABSTRACT

This paper examines theoretical models of smart distributed storage devices located at customer premises for powering local DC lighting and electronic loads, and explores enabled business models and field data from deployments of example Smart DC/Storage systems by Moixa Technology.

INTRODUCTION

Annual electricity demand in UK in 2010 was 328 TWh of which 36% was household electricity demand of 119 TWh. Of this, the demand for domestic electrical appliances in households was about 85 TWh [1].

Demand for electricity from domestic electrical appliances has grown rapidly over the past 40 years (average 3% per year) [2]. The total number of appliances used in homes is projected to increase by 2020, but overall electricity demand is estimated to decline with guaranteed policies for capping domestic appliance use and adoption of high efficiency products [3]. Table 1 below is an estimate of the annual demand from domestic electrical appliances in 2009 and 2020 [3].

85.3 TWh per annum translate to 233 GWh/day or 9 KWh/day per household of electricity demand from household appliances in UK.

Table 1 UK domestic electrical appliance end-use 2009 [1], 2020 [3] (minus heating and hot water)

<table>
<thead>
<tr>
<th>Domestic Electrical Appliance</th>
<th>2009 Total load, TWh/yr</th>
<th>2020 Total load, TWh/yr, Reference Scenario</th>
<th>2020 Total load, TWh/yr, Policy Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audiovisual</td>
<td>20.8 (24%)</td>
<td>21.5</td>
<td>16.7</td>
</tr>
<tr>
<td>Lighting</td>
<td>15.8 (19%)</td>
<td>11.9</td>
<td>10.6</td>
</tr>
<tr>
<td>ICT</td>
<td>6.5 (8%)</td>
<td>6.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Cold Appliances</td>
<td>14.4 (17%)</td>
<td>10.6</td>
<td>9.8</td>
</tr>
<tr>
<td>Washing/Drying</td>
<td>14.2 (17%)</td>
<td>15.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Cooking appliances</td>
<td>13.6 (16%)</td>
<td>13.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Total</td>
<td>85.3 TWh/yr</td>
<td>80 TWh/yr</td>
<td>68.3 TWh/yr</td>
</tr>
</tbody>
</table>

Most traditional appliances require supply of alternating current (AC). However, latest devices in consumer electronics, lighting, and ICT are low wattage devices that require or are likely to require direct current (DC) supply of electricity in the future. All ICT (i.e. PCs – 3.9 TWh, laptops – 0.7 TWh, monitors – 1.5 TWh, and imaging – 0.4 TWh) used in homes today is 100% DC. Lighting would be 100% DC when all homes switch to LED lighting. Most consumer electronics (PSUs – 5 TWh, set top boxes – 3.6 TWh, videos, DVDs – 3.2 TWh, game consoles – 0.6 TWh) are 100% DC and TVs (8.3 TWh) are gradually becoming DC with the market adoption of LED TVs. Other devices such as DC fridges and DC pumps and motors in washing appliances are also becoming available. Most DC internal devices are currently accompanied by inverters that convert AC grid supply into DC supply.

From highlighted rows in Table 1 (audiovisual, lighting and ICT), the share of DC internal devices is estimated as 50% of current (43 TWh) and 50% of future (40 TWh in reference scenario) household appliance load. This paper focuses on the management of DC household appliance loads to reduce peak load electricity usage in the UK.

DC REPRESENTS A HIGH SHARE OF PEAK HOUSEHOLD ELECTRICITY DEMAND

Figure 1 and Table 2 describe the average hourly breakdown of the 9 KWh daily electricity demand for appliances for a typical UK household [4].

42% of appliance load (3.8 KWh) falls during the peak period (defined here as 4 PM - 10 PM). DC devices constitute 57% of this load (2.2 KWh) [4].

Fig 1 Average hourly demand profile for appliances and lighting for a typical household in the UK, 2010 [4]
The domestic sector is considered to have the highest potential for peak shifting in the evening among all other sectors, currently and in the future – regardless of whether summer or winter.

Summer and Winter evening peaks (peak here defined as 4 PM – 7 PM by [1],[5],[6],[7]) are currently estimated as 35 GW and 54 GW respectively [5]. There is a limited match, however, in the household sector between what contributes to peak (i.e. mainly DC loads such as lighting, TV, consumer electronics etc.) and what households may be willing to shift voluntarily which appears to be mainly wet appliances [6]. Current DSM studies focus solely on AC devices (including heating) to shift peak household appliances load to off-peak hours [5],[8],[9]. It is estimated that these devices add up to 9 GW of shiftable load in winter evening and 6 GW of shiftable load in summer evening in 2010 (on an average 7.5 GW daily between 4PM – 7 PM) [5].

Current estimations from other papers are also similar in that only about a quarter to a fifth of household appliances load is price responsive [8]. In a 2010 DSR report, Ofgem assumed only 5-15% peak-shift potential in the household sector [10] (i.e. 5 TWh annually from Fig. 1).

DC loads such as lighting, computing and other electronics, represent a bigger share of peak load. This paper establishes that it is possible to shift all household DC load off-peak in the long run. This translates into a reduction opportunity of over 4.68 GW daily and 15 TWh annually between 4 PM and 10 PM (i.e. observed peak in appliance load in Fig. 1).
3. 1 KW battery capacity added per home in 1000 homes
4. No solar/ renewable generation. Battery charges during night (with off-peak tariff)
5. Assumed 80% efficiency savings on LED, 10% on rest; 14% AC-DC conversion savings
6. Annual peak load of network: 26 GWh
7. Annual total load of network: 60 GWh

CASE STUDY 2: BENEFITS OF MOIXA SYSTEMS DEPLOYED IN LARGE SCALE IN THE UK

Table 3 describes the daily benefits of deploying Moixa systems in 1, 10 and 26 million households (assuming similar values of % DC and efficiency savings as in Case Study 1).

Table 3 Daily benefits of deploying Moixa systems at large scale in UK

<table>
<thead>
<tr>
<th># Households with Moixa systems</th>
<th>Minimum daily load peak reduction</th>
<th>Daily 4-10 PM Peak energy saving</th>
<th>Daily energy saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.19 kW</td>
<td>1.8 kWh</td>
<td>1.5 kWh</td>
</tr>
<tr>
<td>1000</td>
<td>0.19 MW</td>
<td>1.8 MWh</td>
<td>1.5 MWh</td>
</tr>
<tr>
<td>1 M</td>
<td>0.19 GW</td>
<td>1.8 GWh</td>
<td>1.5 GWh</td>
</tr>
<tr>
<td>10 M</td>
<td>1.9 GW</td>
<td>18 GWh</td>
<td>15 GWh</td>
</tr>
<tr>
<td>26 M</td>
<td>4.68 GW</td>
<td>47 GWh</td>
<td>41.6 GWh</td>
</tr>
</tbody>
</table>

* Compared to 7.5 GW of AC peak load considered shift-able as discussed above

Moixa system deployed at such large scales can bring immense benefits and stability to the electricity supply network. Table 4 discusses annual system benefits and savings generated by different players in the electricity value chain by deploying 1 M Moixa systems in the UK.

Table 4 is an indicative view on the benefits of the storage element in aggregate. In [13], a potential £0.12bn in 2020 rising to £2bn in 2030 and £10bn in 2050 is modelled for
storage payback (assuming a 10GW deployment). This is compared to the unique aspects of the Moixa system, such as assured peak period reduction, and net impact of energy efficiency reductions being guaranteed from lighting and AC/DC loss avoidance. Some benefits e.g. £100/kWh per annum for distributed storage [13] vs. bulk (£50/kWh) also overlap with specific value areas like STOR or peak plant abatement, or wind curtailment.

CONCLUSIONS

Moixa systems present an opportunity to address the problem of household evening peak demand reduction by enabling overall energy efficiency and energy security. Each Moixa system has the potential to shift 2 kWh of household DC load to off peak period and reduce daily electricity usage by 1.5 kWh.

This presents a win-win case for households adopting time of day tariffs/smarts to use off-peak supply without unrealistic behavioural change. This also creates benefits in aggregate at the utility level and in low voltage and network level where storage and DSM measures are used for grid balancing, or mitigating infrastructure upgrades, wind curtailment or reducing national investment in peak plant capacity. While this paper has estimated an initial annual value for these benefits, further studies and practical system tests are needed to establish the total system value that can be generated through the deployment of this system.

REFERENCES

[3] Department for environment, food and rural affairs (DEFRA), (2009), “Saving energy through better products and appliances”