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Step 4 – Perform the calculations. 
  
Step 5 – Analyse and present the results. 

Each step is explained further in the following 
paragraphs.  
Case C is chosen to illustrate the analysis, since this is the 
basic case of 130kV-solution, but each step is performed 
similarly for all the five cases. 

Step 1 – reliability model 
In this example only the primary components are 
individually represented in the reliability model. Busbars, 
breakers, disconnectors, protection system and other 
auxiliary equipment are included as a group in the 
station-component. In figure 3 a model of case C, in 
which the load is supplied through feeder 1, is shown. In 
case of a fault on feeder 1 or station S2, the load can be 
supplied through feeder 2, by opening breaker B4 and 
closing breaker B5.  
A similar model is made for all network structures in 
table 1. 
 

 
Figure 3 Reliability model of case C. Breaker B5 is open 
and B4 is closed in normal operation. 
 
Each cable or overhead line and each transformer is given 
a component number 1 to 7. The stations are numbered 
S1 to S5. For case C, only components 1, 2, 7 and 
stations S2 and S5 is actually included in the calculations, 
but the other components are illustrated in the figure 
since they provide a back-up supply in case of a failure in 
the normal supply. 
 

Step 2 – Reliability data 
When the components that are to be represented in the 
model are identified, reliability data are assigned to each 
component. The reliability data for different types of 
components can be obtained from fault statistics or 
literature. The reliability data in this example is obtained 
from [1], [2], [3] and fault statistics from Göteborg 
Energi Nät AB. For some types of components, 
especially components which seldom fail, it can be 
difficult to find relevant reliability data. Therefore it is 
important to always perform a sensitivity analysis after 
the reliability analysis. Improved fault statistics will lead 
to more reliable results. 
There are two reliability parameters required for each 
component to be able to perform the calculations; the 
average failure rate  (faults/year) and the average outage 

time r (hours). The failure rate for lines are calculated 
from the average failure rate for the type of line per unit 
of length multiplied with the length of the individual line. 
One component may have more than one average outage 
time, depending on if the component is repaired, replaced 
or if the failure is bypassed by switching actions. In table 
2 the failure rate and outage time for each component in 
case C are listed. Here, only the outage time alternatives 
relevant to this example are stated. 
 
Table 2 Reliability data for the components in case C, 
normal operation. 
No Type  (f/y) r (h) 
1 New 130kV cable 0,0442 1 (switching)
2 Transformer 130/10kV 0,003 168 (replace)
7 Transformer 130/10kV 0,003 168 (replace)
S2 130 kV station 0,0096 1 (repair) 
S5 130 kV station 0,0096 1 (repair) 
 
A similar table with reliability data is made for all the 
network structures in table 1. 

Step 3 – Identify fault events 
In this step, all possible events that will cause a failure of 
the supply to the load point are identified and listed. It is 
assumed in this example that all the components are 
independent, meaning that only one component at a time 
will fail. Exception is made for underground cables in a 
common duct, the risk of failure of both cables 
simultaneously are considered. The reason for this 
exception is the relatively high risk of both cables being 
damaged at the same time by an excavator.  
 
As indicated in the problem description, the industry in 
question has a high demand of short circuit power to be 
able to start up the process. Therefore, a second type of 
fault event is included in this analysis; faults not causing 
an interruption but instead a lower short circuit power 
and hence making process start-up impossible. If the 
process is running at the time of the fault nothing 
happens, unless the fault causes a severe voltage dip. But 
if the process happens to be down at the time of the fault, 
it will not be able to start again until the fault is removed. 
The industry process is also sensitive to voltage dips. In 
two of the network configurations, B (parallel 130/50 kV 
transformers) and E (meshed 130kV) some of the fault 
events will cause a voltage dip, but not an interruption or 
a too low short circuit power. These faults are also 
included in the analysis. 
In table 3, the relevant fault events for case C are listed 
together with the consequence of the fault, where the 
outage time is taken from table 2. No voltage dip faults 
are identified in case C. 
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Regarding the presentation of the results, is it important 
to stress that the values of the number of fault and the 
unavailability is expected asymptotic values, especially if 
the results are presented to the customer. Over a long 
period of time, the average annual value is expected to 
converge to the presented values, but the actual outcome 
each individual year can deviate substantially from these 
values. 

RESULTS 

From the results of the reliability analysis, in the practical 
example presented in this paper, two main issues can be 
distinguished. For one thing, it is clear that the 130kV-
structure does not result in a decreased number of 
interruptions, unless it is operated as a meshed system. 
Meshed operation will, however, lead to an increased risk 
of voltage dips, since failure of a line or station will cause 
a voltage dip instead of an interruption. Moreover, the 
number of component failures affecting the load point is 
larger in the meshed system than in the radially operated 
one. The amount of voltage dips may be a problem for 
the industry in question as well as other customers 
nearby.   
On the other hand, the unavailability will decrease 
significantly for all 130kV-alternatives, due to that the 
duration of the interruptions will be considerably shorter. 
The reason is the possibility to switch to the back-up 
feeder in the 130kV alternatives. The number of faults 
causing a too low short circuit power will also decrease 
significantly when the system is converted to 130kV. 
  
It can also be seen in the diagrams that the short term 
improvement, case B, will result in marginally lower 
unavailability and number of faults, but the risk for 
voltage dips will increase. Therefore this measure is not 
recommended. 
 

CONCLUSIONS 

The conclusion of the reliability analysis will be that case 
C, the 130kV-alternative with feeder 1 as the normal 
operation, is the preferred solution. 
 
The main reason for not recommending case E, meshed 
operation, as the preferred alternative is the relatively 
high risk of voltage dips. 
 
Case D has no benefits compared with case C, the 
number of interruptions are considerably higher and the 
unavailability somewhat higher. 
 
The reliability analysis should be complemented with a 
more traditional risk analysis, where rare but severe 
events, like a complete outage of a 130kV-station, can be 
taken into account. It is difficult to assign relevant 
reliability data to this type of events, and hence are they 
not suitable to include in the performed analysis. 
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