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ABSTRACT 
Load prediction is an important tool for grid utilities and 
power companies for managing the power system. This has 
traditionally mainly been applied at transmission and sub-
transmission system levels. However, as the traditional grid 
evolves into a smart grid, load prediction at smaller scales 
becomes necessary for efficient management and operation.  
In this paper we investigate how the qualitative and 
statistical properties of load time series change as a 
function of the number of individual loads aggregated in the 
series, and how these properties influence the predictability 
of the time series. We study the performance of a traditional 
autoregressive model, a wavelet-based model, an Echo 
State Network, and a variation of Case-Based Reasoning 
(CBR) at the subtransmission (~10000 customers), 
distribution substation (~150 customers) and single-meter 
level. For all the four prediction methods, we employ an 
evolutionary algorithm as a meta-learner to automatically 
optimize the free parameters for each model-dataset 
combination. We find that relatively accurate predictions 
can be made at finer granularity, but care must be taken in 
choosing, tuning and analyzing the prediction model as the 
regularity of the consumption patterns decreases. 

INTRODUCTION 
Load prediction is an important tool for several bodies at 
the regional and national level. Firstly, authorities and 
power utilities rely on long and medium term prediction for 
capacity and maintenance planning and infrastructure 
development. Secondly, utilities, both grid operators and 
power generators, use shorter-term load prediction (in 
Norway, typically down to 24-hour and 1-hour) for 
production planning and market operations. A variety of 
short-term load prediction strategies designed for the 
transmission network level are presented in the literature, 
see e.g. [1, 2] for reviews. 
 
Already, long- and medium-term load prediction also plays 
an important role for planning and development in the 
distribution grid. Additionally, the evolution of the smart 
distribution grid, combined with modern society’s 
increasing dependence on a reliable supply of high-quality 
power, significantly increases the need for optimal real-time 
operation and control also at this level with a view towards, 
e.g., integration of energy from intermittent sources, 

substation transformer operation, anomaly detection, and 
contingency planning. 
 
Finally, one may envision the use for load prediction at the 
level of a single meter  (households, commercial buildings, 
industry). Electrical devices in modern residential and 
commercial buildings are increasingly equipped with 
interfaces for communication and control, and load 
prediction at each endpoint can improve the utilization and 
efficiency of these devices. This includes charge scheduling 
for electrical vehicles, thermal load scheduling, optimal 
utilization of rooftop solar panels, and improved accuracy 
in estimating cost of energy not supplied (CENS). 
 
There is thus a growing need for load prediction at several 
levels of the distribution network. Given the variety of 
approaches and models available for prediction at the 
transmission level, we are interested in if and how these 
models can be adapted to load time series as we get ever 
closer to the household meter. Moving from transmission 
level through the distribution grid to the final customer 
implies at least three important changes: the number of 
prediction points increases drastically, the resources 
available decrease correspondingly, and the data becomes 
significantly less regular and predictable. As a consequence, 
models that work well at one level of granularity may not 
work well at another, and vice versa.  In this paper we 
investigate how the load time series change as a function of 
the number of individual loads aggregated in the series, and 
how these properties influence the short-term (24-hour) 
predictability of the data streams. In particular, we study 
load time series at the subtransmission (~10000 customers), 
distribution substation (~150 customers) and single-meter 
level, using four prediction algorithms with different 
characteristics. 

METHODS 
The research focus is to study how different predictive 
models perform at various levels of data granularity. We 
have used data from two different sources: SINTEF Energy 
Research [3] and transmission level data from British 
Columbia (BC Hydro). The SINTEF data was recorded 
from 2004 through 2006, the BC Hydro dataset covers the 
period 2004 through 2010. More details on this data set can 
be found in [4]. The SINTEF data allows us to investigate 
how models perform on the single-meter level, as well as 
distribution substation (~150 meters).  
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A key aspect in this regard is how to parameterize the 
different models in an optimal way. Instead of manually 
searching for the optimal parameters, we employ a genetic 
algorithm (GA) to find these parameters [5]. A genetic 
algorithm tries out different solutions to a problem at 
random, passing on the most fit (i.e. the individuals that 
performed best at a certain task) to the next generation. The 
genome of a “child” in the next generation is created by 
combining parents’ genes (crossover) and by random 
mutation.  
 
In the current application, the individuals are the different 
predictive models, and the genome specifies the parameters 
of the model. Each individual is presented with historical 
load data (the length of which is also specified as part of the 
genome), which it uses to train the model. Subsequently, a 
24-hour period is predicted, and how well the prediction 
matches the actual load data is how the fitness of each 
individual is evaluated. 
 
Four different predictive models are evaluated. These are all 
primarily data-driven models. They all allow for covariates 
such as weather data, in addition to the load time series. 
Additional domain knowledge may also be included in 
various ways, but that is not a main focus in this paper. The 
models are briefly presented below, along with the 
parameters that need to be found by the GA. 

Autoregressive model (AR) 
The AR model is a linear predictor in which each prediction 
is a weighted sum of previous observations. How many 
previous values contribute to the output is determined by 
the order (the parameter searched by the GA), and the 
contribution of the previous values is typically calculated 
by the least squares method. 

Echo State Network (ESN) 
An ESN is a recurrent neural network that is characterized 
by a randomly connected hidden layer where only the 
output layer weights are trained [6]. The hidden layer is 
typically larger than a standard recurrent neural network 
where the backpropagation algorithm is used, and it is 
therefore referred to as a reservoir model. Since only the 
output layer nodes are trained, the weights can be found by 
linear regression. The training time is therefore greatly 
reduced compared to the backpropagation algorithm. There 
are three inputs to the ESN: the current temperature, the 
observed load 24 hours ago, and the load in the previous 
hour. When predicting, the ESN is switched to signal 
generation mode by feeding the prediction back into the 
network. To define an ESN, five parameters need to be 
found by the GA: network size, leakage rate, input scaling, 
bias scaling and spectral radius (which defines the Echo 
State property). 

Wavelet prediction 
The wavelet transform is a multiresolution technique that 

allows a prediction model to represent structure in the load 
data at different time scales, e.g. looking for daily, weekly 
and seasonal patterns. We employ the redundant Haar 
transform, which yields continuous signals at each scale of 
the transform. By using a selection of the values found in 
each scale, linear regression can be used to make a predictor 
based on the wavelet transform [7]. The same approach was 
taken to load prediction, but predictions were only made 
one hour into the future, instead of 24 hours [8]. The 
parameter to find by the GA is the number of scales the 
time series is decomposed to. 

Case-Based Reasoning (CBR) 
CBR is a method for reusing experiences (cases) to solve 
new problems [9]. CBR does not have an explicit model, 
and it is therefore well suited in domains that are difficult to 
model mathematically. Cases are stored in a database, 
described by features. When the system is used to solve a 
new problem, the system tries to find a similar case by 
matching features. The most similar case is then reused. For 
the current domain, the CBR system searches for similar 
load profiles in order to predict the next 24 hours. This is in 
essence the problem of retrieving and storing time series. 
Time series are well suited to be stored in R-Trees, however 
a compact representation of the time series is necessary to 
build an efficient R-Tree. To achieve this, the Haar wavelet 
transform is applied. The wavelet coefficients then serve as 
the indices to the R-Tree (the features in CBR terms). How 
many coefficients to use is found by the GA. 

EXPERIMENTS AND RESULTS 
In order to investigate and compare the performance of the 
different prediction models, 30 evolutionary runs with 
different random seeds were performed for each dataset-
model combination. Model parameters were evolved on a 
training set. The resulting 30 parameter sets were then 
ranked by mean prediction error on a 6-month validation 
set. Finally, the prediction error on another 6-month test set 
was recorded. We used root mean square error (RMSE) as 
error measure for 24-hour prediction. The final prediction 
error is then represented by the mean RMSE over each 
period. We chose RMSE over mean absolute percent error 
(MAPE) since MAPE is not a suitable error measure when 
working with single-meter predictions, since it is undefined 
at zero. 
 
Table 1 summarizes the mean prediction error on the test 
set for the 15 best evolved parameter sets in each 
experiment (recall that the validation period is used to pick 
the best 15 out of the 30 evolved parameter sets). In Figure 
1, these prediction errors were divided by the highest value 
in each column, in order to facilitate inter-model 
comparisons between datasets. We find that the CBR 
method outperforms the other models at the transmission 
level, whereas the situation is reversed at the distribution 
and single-meter levels. Note further that the ESN model 
has considerably higher standard deviation than the other 
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models at the distribution and transmission levels.  
 
Example predictions at increasingly finer granularity are 
shown in Figures 2 through 5. As expected, predictability 
changes in proportion to the number of meters aggregated. 
The transmission level time series is fairly regular, and the 
predictions are correspondingly accurate (Fig. 2). The time 
series at the distribution substation level is less regular than 
at the transmission level, but all the models still produce 
fairly accurate predictions (Fig. 3). However, at the single-
meter level, there are large variations between data sets. 
Some are moderately regular (Fig. 4), whereas others are 
very noisy and difficult to predict (Fig. 5). As the prediction 
error increases, the differences in “failure mode” between 
models become apparent. In particular, we observe that the 
CBR model degrades less gracefully than the other models, 
and that the autoregressive model converges toward the 
daily mean. 
 
Finally, we investigated the relationship between number of 
aggregated meters and prediction error. For each 
n ∈ [1, 150], we created 10 different load time series by 
summing the consumption from n randomly selected meters 
and evolved AR predictors for each of these. The result is 
shown in Figure 6. When the time series consists of a sum 
of less than about 20 meters, prediction error and deviation 
rise sharply. However, fairly accurate predictions can be 
made with as few as 30–40 meters. 
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Figure 1. Histogram of prediction errors for different 
models at different levels of granularity. The error is 
normalized as described in the text.  
 
Table 1. Mean test set prediction error (RMSE) of the 
15 best predictors evolved for each model, as ranked by 
evaluation on the validation set. 
 Single meter Distribution 

substation 
Transmission 

ESN 0.527 21.56 319 
Wavelet 0.527 22.25 317 
AR 0.504 21.43 307 
CBR 0.621 24.04 289 
 

 
Figure 2. Four consecutive 24-hour predictions at the 
transmission level. RMSE in parenthesis. 
 

 
Figure 3. As Fig. 2, at the distribution substation level. 
 

 
Figure 4. As Fig. 2, at the single-meter level. 
 

 
Figure 5. As Fig. 4, but on a less regular load time series. 
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Figure 6. Prediction error (mean and standard 
deviation) as a function of the number of meters 
accumulated in the predicted time series. 

DISCUSSION 
When investigating the performance of the various models, 
we see that the CBR model has very low prediction errors 
on the transmission level, but higher errors than the other 
models on the less regular data sets at the distribution level. 
The reason for this can be seen in Figures 4 and 5: the CBR 
model makes predictions at the full extent of peaks and 
troughs, whereas the other models degrade towards a 
regression to the daily mean. The evaluation is dependent 
on the error measure in use. If the goal was to accurately 
predict the magnitude of the daily peak load, rather than to 
minimize the overall distance between predicted and 
observed values, a predictor that flattens its estimate as the 
noise level increases would be of little value, and a CBR 
model might be preferable. From an economical 
perspective, this might be of greater interest for power 
companies. If a power company underestimates the energy 
consumption of a user, it must supply the customer with 
power bought on the more expensive intra-day market.  
 
We also note that the ESN model has considerably higher 
standard deviation than the other models at the distribution 
substation and transmission levels (Fig. 1). This is partly 
due to the large number of parameters involved in tuning 
this model, which results in a large search space for the 
genetic algorithm, and in part due to the nature of the 
model, with feedback signals that under unfortunate 
circumstances tend to dominate the model dynamics in a 
detrimental way. In this regard, it seems that the ESN is 
prone to overtraining, and care must be taken especially at 
the transmission level, where the regularity of the time 
series allows for too much specialization to the training 
data.  
 
Finally, we wanted to examine the relationship between 
complexity of the load data and prediction performance. 
Figures 4 and 5 illustrate the stochastic nature of single 
meter time series, which is in stark contrast to the 
smoothness and regularity at the transmission level (Fig. 2). 
To investigate this issue, Figure 6 shows that the AR model 
is able to make relatively accurate predictions of time series 
composed of as little as 30-40 energy consumption meters. 

The figure also reveals how much more difficult it is to 
predict load power consumption as the number of 
aggregated users decrease. 
 
Our experiments reveal how the performance of the models 
changes as the granularity of the data changes. For instance, 
the CBR model has the best performance at transmission 
level and the worst performance on the single meter level. 
In other words, models traditionally employed for load 
prediction at the transmission level might not be equally 
suitable for distribution level load prediction. 
 
An important part of prediction at finer levels of 
granularity, is the tuning of the model in accordance with 
the characteristics of the data. The use of a genetic 
algorithm automates this process. 

REFERENCES 
[1] D.W. Bunn and E.D. Farmer, 1985, ”Review of short-

term forecasting methods in the electric power 
industry”, Comparative Models for Electrical Load 
Forecasting, 13–30. 

[2] H. K. Alfares and M. Nazeeruddin, 2002, ”Electric 
load forecasting: literature survey and classification of 
methods”, Intl. Journal of Systems Science, 33(1):23–
34 

[3] A. Z. Morch, I. Graabak, and N. Feilberg, 2009, 
“Results of Monitoring of AMR Systems in Norway: 
Analysis of Metered ata and Definition of the 
Performance Parameters”, 20th Intl. Conf. on 
Electricity Distribution. 

[4] B. Høverstad, A. Tidemann, H. Langseth, 2013, 
“Effects of Data Cleansing on Load Prediction 
Algorithms”, Proc. IEEE Symposium Series on 
Computational Intelligence (to appear). 

[5] N. Amjady, F. Keynia, and H. Zareipour, 2010, “Short-
term load forecast of microgrids by a new bilevel 
prediction strategy”, IEEE Trans. on Smart Grid, 
1(3):286–294. 

[6] H. Jaeger and H. Haas, 2004, “Harnessing nonlinearity: 
Predicting chaotic systems and saving energy in 
wireless communication”, Science, 304(5667):78–80. 

[7] O. Renaud, J.L. Starck, and F. Murtagh, 2005, 
“Wavelet-based combined signal filtering and 
prediction”. IEEE Trans. on Systems, Man, and 
Cybernetics, Part B: Cybernetics, 35(6):1241–1251. 

[8] D. Benaouda, F. Murtagh, J.L. Starck, and O. Renaud, 
2006, “Wavelet-based nonlinear multiscale decom-
position model for electricity load forecasting”, 
Neurocomputing, 70(1):139–154. 

[9] A. Aamodt and E. Plaza, 1994, “Case-based reasoning: 
Foundational issues, methodological variations, and 
system approaches”, AI communications,7(1):39–59. 

 


