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ABSTRACT 
The capacity of renewable power sources and especially 
intermittent sources like wind and PV is steadily increasing. 
The existing balance between production and consumption 
is seriously affected by these new sources. Flexible demand 
for example in buildings is one solution to come back to a 
stable system. Flexibility in buildings can be achieved by 
using model predictive control (MPC) with optimized 
scheduling for the buildings’ heating, ventilation and air 
conditioning (HVAC) systems. Two approaches for self-
adapting building models are discussed in this paper as 
well as different algorithms for optimization of HVAC 
schedules. 
The two approaches for self-adapting models can be 
differentiated by their mathematical structure. The neural 
network (NN) approach is called “black-box” model. In 
contrast to that, the “white-box” model is a system of 
differential equations derived from building physics. Both 
models are developed to be used in model predictive control 
to forecast the building’s thermal behavior. 
Once the thermal behavior is predictable, the optimal 
schedule at minimal costs for the HVAC systems has to be 
determined with respect to thermal comfort. A schedule for 
HVAC components contains the information, in which time 
step which component is on or off. Therefore, a binary 
integer programming problem has to be solved. 
 

INTRODUCTION 
The increasing share of fluctuating electricity production by 
renewable energy evokes an increasing requirement for 
energy storage and demand response capacities. Recent 
studies revealed a considerable potential for demand 
response in non-residential buildings [1]. This potential 
mainly is connected with the thermal inertia of the 
buildings. This thermal inert mass could be used as storage 
for thermal energy. If surplus of wind energy for instance 
leads to low electricity prices, electrical heating systems are 
operated at peak load to charge the building with thermal 
energy. Typically, the heavier the fabric of a building is the 
more energy can be stored. Charging a building means in 
this case to raise the temperature of floors, walls and 
ambient air. The optimization process is necessary to find 
out when the HVAC systems have to operate to charge the 
building at minimal costs. The solution of this process is the 
optimal schedule for the HVAC components.  
Depending on the electricity price, the MPC calculates the 
optimal schedule for the HVAC systems of the building 

with an iterative method. To provide thermal comfort inside 
the building, the thermal behavior of the building is 
predicted with a model for each optimization step. The 
optimized schedule is then applied to the HVAC systems of 
the real building. Figure 1 provides the schematic 
configuration of the investigated system. 
Different buildings show different thermal behaviors, 
caused by different materials and structures. Consequently, 
for every individual building an individual model has to be 
made. To reduce the effort for modeling of different 
buildings, adaptive models are developed. These models 
have a universal structure and are shaped by fitting them to 
input-output-data. Input data are e.g. weather data and 
control signals of HVAC systems, the output signal is the 
room temperature. 
 

MPC
electrical

HVAC system
building

electricity price,
weather data

self-adapting
model

€ °C

 
 

Figure 1: MPC for electrical HVAC systems 
 

SELF ADAPTING MODELS 
Initially, a detailed building model implemented in the 
simulation software TRNSYS generates the training data for 
the neural network. During the training process, the 
parameters of the model are adjusted. In contrast to previous 
publications [2], [3], [4], the neural network is trained with 
a parallel instead of a serial-parallel structure. 
Although with a serial-parallel structure model, like the 
mostly used Nonlinear AutoRegressive model with eXternal 
inputs (NARX model) good results were shown for a 
prediction horizon up to 4 hours [2], prediction of more than 
one time-step (simulation) with this kind of model structure 
is expected to lead to a bias error, because of the different 
set ups during training and prediction [5]. Hence, for 
simulation a parallel structure like the Nonlinear Output 
Error (NOE) model is preferred in dynamic system 
identification [6]. Using a NOE configuration requests a 
dynamic NN to be used instead of a static NN, because of 
the feedback of the NN’s output to its own input. Training 
dynamic NN is much more difficult because dynamic 



 C I R E D 22nd International Conference on Electricity Distribution Stockholm, 10-13 June 2013 
 

Paper 1208 
 

 

CIRED2013 Session 4 Paper No 1208  

gradient calculation like Real Time Recurrent Learning 
(RTRL) or Back Propagation Through Time (BPTT) has to 
be used instead of the standard Back Propagation (BP) 
algorithm [7], [8]. 
Since the purpose of using the trained neural network model 
of our building is to implement it in a model predictive 
control with the aim to optimize costs depending on the 
flexible electricity rate for at least the next day, it should 
provide reliable results for simulating the next 24 hours. To 
accomplish that, it is necessary to use a parallel model 
structure.  
The training process is successful, if the original model and 
the self-adapting model show approximately the same 
behavior during later simulations. 
To generate data for the first training phase, the TRNSYS 
building is simulated for 26 days with the implemented 
control of HVAC systems. Figure 2 shows the result of 
simulating the neural network model for the next two days 
by using the standard controller compared to the 
performance of the TRNSYS model. The deviation between 
both simulated room temperatures is always less than 1 K. 
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Figure 2: Simulation results under standard conditions 

and standard test data 
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Figure 3: Simulation results under standard conditions 

with random test data 

Additionally, the performance of the neural network is 
tested by using test data, which is generated with a different 

operation mode of the building technology. Figure 3 shows 
the results of the same trained neural network as before, 
now with the test data of the “new” operation mode. 
Because this test data contains correlations and values that 
are not included in the training data, the results are very 
poor. 
 
The deviation between the simulation results could be 
lowered by using a wider range of training data. This data 
includes unconventional operation modes of the HVAC-
Systems. While other conditions are left as mentioned 
before, satisfying results are delivered (Figure 4). 
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Figure 4: Simulation results under random conditions 
with random test data 

In the ongoing investigation the neural network approach is 
compared with a white-box model with regard to adaptation 
time and deviation of simulation results. This model 
consists of several coupled energy balances, taking into 
account the internal energy of thermal masses [9]. The 
universal structure of this set of energy balances shapes a 
state space model with identifiable parameters [10]. The 
initially unknown parameters (e.g. masses, heat capacities, 
heat transfer coefficients) in the system of energy balances 
are estimated in a system identification process [11]. Figure 
5 shows the first results for parameter identification with a 
state space model. In this case, the model has been trained 
with the data of one week. Training data on the input side 
are weather conditions and control signals, the only output 
signal is the room temperature. The number of signals on 
the input and output side defines the dimension of the state 
space model. 
This white box model had to adapt the same TRNSYS 
simulation model as described above. The results of the 
original TRNSYS model and the adaptive white box model 
are shown in Figure 5. The deviation between both graphs is 
mostly significantly below 0,5 K. 
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Figure 5: Simulation results, state space model 

The preliminary results show, that neural networks need a 
wide range of training data to reproduce the buildings’ 
thermal behavior. Subject of further investigations is to find 
solutions (e.g. combination of white- and black-box model) 
for shortening adaptation time and minimize the range of 
necessary training data. 

OTIMIZATION OF HVAC SCHEDULES 
Besides the development of adaptive building models, 
optimization is a main part of a model predictive control. It 
calculates an optimized schedule for electric HVAC 
systems like a heat pump or a chiller. The resolution of the 
optimization is 15 minutes, which leads to 96 binary 
variables per day. Each variable represents the state “on” or 
“off” for one timestep. 
We started with a detailed TRNSYS-model of a single 
room. This office accommodates 16 employees and is 
equipped with active floor slabs for heating and cooling, 
radiators and ventilation. Thermal power is generated by a 
heat pump and a chiller respectively. Input parameters for 
the simulation are information on weather, occupancy, 
schedules for heating and cooling and a flexible electricity 
tariff. 
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Figure 6: Schematic optimization process of the MPC 

As can be seen in Figure 6, the optimization calls the 
building model with a certain set of variables, which 
represent the schedules. The building model simulates the 

building including the HVAC system and delivers a 
temperature profile and a load profile. The post-calculation, 
gives the total cost, depending on the flexible electricity 
tariff and a penalty function. In order to reduce the cost, the 
optimization algorithm varies the schedule and recalls the 
building simulation in an iterative process. 
To gain first experience with optimizing heating and 
cooling schedules, GenOpt [12] and TRNSYS were used. 
To gain more flexibility, GenOpt was replaced by a self-
developed optimization framework written in LabVIEW. 
Besides more influence on the optimization algorithm, it is 
possible to replace building model in TRNSYS by a self 
adapting model, as described before.  
With this environment different optimization algorithms and 
penalty functions can be tested for different typical days. 
The results shown in Figure 8 are optimized with the 
Hooke-Jeeves algorithm [13]. 
The penalty function is shown in Figure 7. The blue graph 
defines the range of comfort, which is between 20 °C and 
26 °C for this example. This function is called dead band 
(DB), because of its zero section. If the range of comfort is 
left, there are high penalties. We found out, that results 
might be improved by combining the DB-function with a 
value function that points on a particular temperature near 
the border of the range of comfort. For heating conditions 
the function is f(x)=abs(x-21). By adding up DB and the 
value function the penalty is calculated. It is applied only 
during working hours from 7:00 till 19:00 o’clock, to create 
a sort of night set back. 
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Figure 7: Penalty functions 

Figure 8 shows the results for an optimized heating 
schedule for a Tuesday in winter. The heating power of 
standard operation is shown as blue area. The red area 
shows the resulting heating power of an optimized schedule. 
It can easily be seen, that the time of operation is shifted to 
the period of low electricity tariff, given in black. 
Optimized operation does not use radiators in contrast to 
standard operation where they run till 18:00 o’clock. With 
standard operation (blue curve), room temperature rises 
higher than for optimized operation (red curve). Due to less 
and well planned operation during periods of low electricity 
tariff, the optimization reduces costs by 47%. 
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Figure 8: Results for scheduled heating  

A major point for embedded building automation controllers 
is a good balance between computation time and 
optimization results. Therefore different optimization 
algorithms and penalty functions must be tested and 
compared. To optimize computational effort, a variation of 
the schedules resolution will be tested. This means that the 
resolution decreases with the forecast horizon. For example, 
if the resolution is reduced to one hour for the second half 
day, the number of optimization variables can be reduced 
from 96 to 60. A rolling horizon optimization of the 
schedules also has to be implemented as a further step. 
 
SUMMARY 
Both adaptive modeling approaches show promising 
preliminary results concerning their ability to reproduce a 
buildings thermal behavior. In contrast to physical models, 
neural network models need a wider range of training data. 
One disadvantage of physical models is the fact, that a basic 
structure of energy balances has to be predestined. 
Therefore, a minimum of knowledge about the modeled 
building is necessary. In contrast to that, the black box 
character of the neural network approach needs hardly any 
information about a building. As a consequence, it is 
assumed to be applicable for a wider range of objects. 
Concerning HVAC scheduling, the presented results show 
that costs can be minimized significantly by Hooke-Jeeves 
algorithm. Nevertheless, more extensive investigations 
should deliver improved algorithms with shorter 
computation time. Finally, it is necessary, to test the 
separately developed approached for adaptive models and 
optimization algorithms in integrated systems. 
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