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ABSTRACT 

This paper describes a framework to support the 

electricity distribution system operator (DSO) in 

identifying the appropriate control strategy in a system 

due to the stochastic nature of the integrated intermittent 

distributed generation. A distributed optimization and 

control algorithm is applied in order to determine the 

look-ahead allocation of distributed resources for risk 

mitigation, as well as real-time controls to attempt to 

ensure that the electrical distribution system (DS) is 

managed in a reliable and cost-effective manner. The 

management of these active resources will thus ensure 

that the DS can be optimized to operate in an efficient 

manner while providing adequate security. 

 

INTRODUCTION 

The progression in the development of modern electricity 

grid infrastructure is leading to rapid changes in the 

structure and operation of this critical system.  System 

performance may be drastically altered due to the 

incorporation of new sources of renewable electrical 

generation within the DS, as well as the development of 

flexible, demand-responsive customers and distributed 

generation.  In addition to these changes, developments in 

electricity markets and communications technologies 

enable increasing customer participation within the 

electricity markets through response to technical and 

economic signals. 

 

In response to these system developments, it will be 

critical to develop and implement advanced strategies for 

control of the system to ensure that it is operated in an 

economically efficient and secure manner.  Risks posed 

to the system, such as substation transformer overload, 

line thermal limitations, and defined voltage constraints 

are amongst the set of potential risks which must be 

accounted for in the development of an operational plan 

for the network resources. While planning the 

deployment of distributed generation (DG) or demand 

response (DR) resources, further complications are 

encountered when accounting for the inherent 

stochasticity of renewable generation sources.  The 

probabilistic uncertainty of these energy sources must be 

accounted for when optimizing system resource plans, 

which leads to significant increases in computational 

complexity.  Further, once an adequate plan is developed, 

the real-time deployment of the resources poses an 

additional problem, since the uncertainty of renewable 

sources will dictate variations in the real-time utilization 

of the allocated resources. 

 

To address this set of challenges, a framework is 

presented in this paper which seeks to guide both 

operational planning and real-time control of the system.  

PLANNING & CONTROL FRAMEWORK 

The optimizations involved in developing an operational 

plan for a DS with the inclusion of demand-responsive 

customers and intermittent renewables present a 

significant computational challenge.  The requirement of 

using a nonlinear multi-hour AC optimization to model 

both power flows and voltage levels in the system further 

complicates simulation, and motivates the use of 

advanced techniques to accelerate optimization.  

 

The framework proposed in this paper implements a 

multi-stage operational planning and control strategy to 

address the previously mentioned computational and 

system modelling challenges.  In the first stage, the DS 

and its resources are aggregated through the use of a 

network reduction algorithm which seeks to preserve a 

desired level of accuracy in network simulations while 

significantly reducing the amount of computation 

required. The second stage utilizes the aggregated 

network as an input, in addition to a characterization of 

the stochastic behaviour of the incorporated renewable 

generation, in order to perform a probabilistic AC 

optimal power flow (ACOPF) to guide the operational 

planning of the system resources.  The third stage of the 

framework utilizes both the aggregated network from the 

first stage and the probabilistic results from the second 

stage as inputs to a MAS-based control scheme which 

determines real-time allocation of resources in the 

network. 
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Network & Resource Aggregation 

When performing an optimization to determine the 

operational plan for a DS, it is usually necessary to 

consider both the power flows which may lead to thermal 

stress, and to constrain voltage levels within a prescribed 

range to preserve voltage stability.  This requires the use 

of a nonlinear ACOPF optimization, and as the number of 

nodes   in the simulated network increases, the number 

of nonlinear equations required to simulate the network 

increases as   . In many cases, this can lead to 

unreasonable simulation times. 

 

A method of addressing this is to perform an aggregation 

of the network to condense both the physical network and 

the nodal resources, as seen in Fig. 1, into a new    node 

network, where the nodal loads and generation are 

collected and placed proportionally at the appropriately 

locations.  This aggregation is enabled through the 

construction of a permutation matrix  , and a 

condensation matrix  , which provide a mathematical 

description of the nodal aggregation, and whose 

formation is described in the literature [1,2]. The loads 

are then condensed as: 

                                             

                                         

Where subscript ’R’ indicates nodal quantities from 

reduction, and a new admittance matrix is defined as   . 
 

Once aggregated, two sets of compensating loads are 

developed which assist in preserving accuracy during 

optimization, as seen in Fig. 2. The first compensating 

load,      , is designed to compensate the aggregated 

network in the base case, and the second load,   , 

compensates when any renewable generation or demand 

response differs from the base case. 

 

A typical ACOPF optimization can then be applied, 

where all the nodal contributions in the aggregated 

system are combined to form  

                                                     

                                                     
and the linear constraints ensuring that nodal power flows 

sum to zero are modified to include the impact of the two 

compensating loads which are present at each node in the 

aggregated network 

                                

                                

 

Probabilistic Optimal Power Flow 

Though system complexity has been significantly 

reduced via the use of an aggregation method, system 

simulation and optimization is still significantly 

complicated by the inclusion of the stochastic behaviour 

of the renewable generation within the DS, in this case 

the presence of wind generation. A traditional method for 

assessing the impact of the generation stochasticity is the 

utilization of a Monte Carlo (MC) simulation method to 

collect statistics for the system optimization outputs. In 

this case the outputs considered are the required 

allocation of DR and DG to address system risks under 

generation uncertainty. An alternative probabilistic 

method, Point Estimate Methods (PEM) [3,4], require a 

significantly reduced amount of computation to yield the 

statistical properties of the outputs, and are shown to 

compare well to MC results. 

 

Application of a PEM proceeds by creating a set of input 

data referred to as concentrations.  Each of the 

concentrations yields two components, the first being a 

point within the random variable input space     , and the 

Figure 1: Original 58-bus distribution network, including 

locations of renewable wind generation and potential distributed 

generation (which could also be in the form of demand-

responsive curtailment.) 

Figure 2: Aggregation of the 58-bus network yielding an 8-bus 

equivalent. 
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second being a weight corresponding to the point,     .  

 

While the MC method utilizes random sampling of the 

input variables to perform the simulation, a PEM selects a 

critical set of input points, and applies the appropriate 

weights to solve for the outputs. For each of the input 

points from the PEM concentrations, an optimization is 

performed to calculate an output variable 

                      

which is the result of an individual ACOPF with 

objective function   , and the data from all concentrations 

is used to calculate the statistical moments of the output 

as 

                  
 

 

   

  

   

     

Significant computational savings can be achieved 

through the application of a PEM method to determine 

the statistical properties of operational planning outputs, 

such as the amount of DG which may need to be used to 

ensure secure and cost-effective system operation. Figure 

3 displays both the probability distribution function 

(PDF) and cumulative distribution function (CDF) of the 

DG requirements for a single hour, where the PEM 

distribution is compared to a histogram of the MC result.  

Additionally, the results of a 24-hour optimization to 

determine DG requirements are shown in Fig. 4, 

comparing the accuracy of the PEM results to those of a 

MC simulation. 

Multi-Agent System for Autonomous Control 

The goal of the initial two stages of the proposed 

framework was to analyse the network to gain insight on 

the impact which the uncertain generation may have on 

the DS, and to ascertain the probabilistic distributions of 

the resource allocations which would be required to 

ensure secure and cost-effective operation.  The results of 

the probabilistic OPF applied to the aggregated network 

are utilized to develop a look-ahead operational plan, but 

an additional control strategy is required to execute the 

plan in real-time.  

 

A multi-agent control system [5,6] is a desirable 

alternative for the coordination of the DS resources, as it 

requires infrequent communication to properly allocate 

system resources, since it requires only localized system 

information.  This property may also assist in making the 

control more resilient to both physical and 

communications disturbances.  

 

The MAS controls proceed by utilizing the aggregated 

network to form a directed graph, as shown in Fig. 5, 

based on the physical structure of the aggregated 

admittance matrix of the DS. Each node from the 

aggregated network is represented by a vertex in the 

graph, and for any nodes which share a connection in the 

admittance matrix, edge connections are established in 

both directions between the vertices, and a self-directed 

edge is placed on each vertex. 

 

Two sets of edge weights are applied for control of the 

system and stored in matrices    and   , which are used 

respectively to control the division of allocation amongst 

vertices and to ensure the sum of allocated resources 

equals the total requested resources. A set of numerator 

and denominator coefficients are iteratively defined as 

                                   

                                       

where   is the initial vector of requested resources, and 

     and      are respectively the vectors of maximum 

and minimum resource allocation allowed at each node. 

The control algorithm proceeds with each vertex 

calculating its own resource contribution, and passing a 

remaining portion, dependent upon the edge weight 

matrices, to its neighbouring nodes. The iterative 

computation of the individual vertex contribution is 

 

Figure 3: Distributions (PDF and CDF) of required DG 

within the aggregated network for a chosen hour. 

Figure 4: Statistics of the DG quantities required under the 

wind generation uncertainty for the simulated 24 hour period. 

Both a comparison of the mean and 90% confidence intervals 

are shown. 
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which, when performed successively throughout the 

vertices within the graph (either synchronously or 

asynchronously), succeeds in distributing the requested 

resources (in the case of the DS, the desired resource 

being some quantity of DG, DR, or reactive 

compensation.)   

 

An example of the application of the MAS control 

scheme applied to the given aggregated network is shown 

in Fig. 6.  In this case, two of the vertices are prescribed 

by the edge weight matrices to assume more of the 

requested DG load, vertex 1 is set to allocate no DG, and 

the remaining vertices should split the remainder of the 

requested resources evenly. It is seen that the algorithm 

appropriately addresses the autonomous distributed 

allocation of the requested resources. 

CONCLUSIONS 

The framework proposed in the paper provides an 

effective methodology for the analysis of a DS while 

considering the impact of renewable generation 

uncertainty, allowing for the development of an 

operational plan which achieves security and economic 

efficiency. Subsequently, the multi-agent control 

architecture is shown to utilize the planning results to 

effectively implement distributed control of resources. 
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Figure 5: Directed graph for the multi-agent system control, 

derived from the structure of the aggregated network of Fig. 2. 

Figure 6: Iterative convergence of the solution for the MAS-

based distributed algorithm. Note that the MAS control 

intentionally divides the resources amongst nodes based on 

desired weighting. 


